![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1tmfv1 | Structured version Visualization version GIF version |
Description: Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
coe1tm.z | ⊢ 0 = (0g‘𝑅) |
coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
coe1tm.e | ⊢ ↑ = (.g‘𝑁) |
Ref | Expression |
---|---|
coe1tmfv1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
8 | 1, 2, 3, 4, 5, 6, 7 | coe1tm 20128 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |
9 | 8 | fveq1d 6547 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))‘𝐷)) |
10 | eqid 2797 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )) | |
11 | iftrue 4393 | . . 3 ⊢ (𝑥 = 𝐷 → if(𝑥 = 𝐷, 𝐶, 0 ) = 𝐶) | |
12 | simp3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 ∈ ℕ0) | |
13 | simp2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ 𝐾) | |
14 | 10, 11, 12, 13 | fvmptd3 6664 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))‘𝐷) = 𝐶) |
15 | 9, 14 | eqtrd 2833 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ifcif 4387 ↦ cmpt 5047 ‘cfv 6232 (class class class)co 7023 ℕ0cn0 11751 Basecbs 16316 ·𝑠 cvsca 16402 0gc0g 16546 .gcmg 17985 mulGrpcmgp 18933 Ringcrg 18991 var1cv1 20031 Poly1cpl1 20032 coe1cco1 20033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-ofr 7275 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-fz 12747 df-fzo 12888 df-seq 13224 df-hash 13545 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-tset 16417 df-ple 16418 df-0g 16548 df-gsum 16549 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mhm 17778 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mulg 17986 df-subg 18034 df-ghm 18101 df-cntz 18192 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-subrg 19227 df-lmod 19330 df-lss 19398 df-psr 19828 df-mvr 19829 df-mpl 19830 df-opsr 19832 df-psr1 20035 df-vr1 20036 df-ply1 20037 df-coe1 20038 |
This theorem is referenced by: coe1tmmul2 20131 coe1tmmul 20132 deg1tm 24399 ply1remlem 24443 fta1blem 24449 |
Copyright terms: Public domain | W3C validator |