Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem3 Structured version   Visualization version   GIF version

Theorem elrgspnlem3 33233
Description: Lemma for elrgspn 33235. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem3 (𝜑𝐴𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem3
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2 fveq1 6905 . . . . . . . . . 10 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤))
32oveq1d 7445 . . . . . . . . 9 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))
43mpteq2dv 5249 . . . . . . . 8 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))
54oveq2d 7446 . . . . . . 7 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
65eqeq2d 2745 . . . . . 6 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))))
7 breq1 5150 . . . . . . . 8 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0))
8 zex 12619 . . . . . . . . . 10 ℤ ∈ V
98a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → ℤ ∈ V)
10 elrgspn.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑅)
1110fvexi 6920 . . . . . . . . . . . . 13 𝐵 ∈ V
1211a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
13 elrgspn.a . . . . . . . . . . . 12 (𝜑𝐴𝐵)
1412, 13ssexd 5329 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
15 wrdexg 14558 . . . . . . . . . . 11 (𝐴 ∈ V → Word 𝐴 ∈ V)
1614, 15syl 17 . . . . . . . . . 10 (𝜑 → Word 𝐴 ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → Word 𝐴 ∈ V)
18 1zzd 12645 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑣 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
19 0zd 12622 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ ¬ 𝑣 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
2018, 19ifclda 4565 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) ∈ ℤ)
2120fmpttd 7134 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)):Word 𝐴⟶ℤ)
229, 17, 21elmapdd 8879 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ (ℤ ↑m Word 𝐴))
2322elexd 3501 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V)
2421ffund 6740 . . . . . . . . 9 ((𝜑𝑥𝐴) → Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)))
25 0zd 12622 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ∈ ℤ)
26 snfi 9081 . . . . . . . . . 10 {⟨“𝑥”⟩} ∈ Fin
2726a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → {⟨“𝑥”⟩} ∈ Fin)
28 eldifsni 4794 . . . . . . . . . . . . 13 (𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩}) → 𝑣 ≠ ⟨“𝑥”⟩)
2928adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → 𝑣 ≠ ⟨“𝑥”⟩)
3029neneqd 2942 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → ¬ 𝑣 = ⟨“𝑥”⟩)
3130iffalsed 4541 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
3231, 17suppss2 8223 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})
33 suppssfifsupp 9417 . . . . . . . . 9 ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V ∧ Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∧ 0 ∈ ℤ) ∧ ({⟨“𝑥”⟩} ∈ Fin ∧ ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
3423, 24, 25, 27, 32, 33syl32anc 1377 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
357, 22, 34elrabd 3696 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
36 elrgspn.f . . . . . . 7 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
3735, 36eleqtrrdi 2849 . . . . . 6 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ 𝐹)
38 eqeq2 2746 . . . . . . . . . 10 (𝑥 = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥 ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
39 eqeq2 2746 . . . . . . . . . 10 ((0g𝑅) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
40 eqid 2734 . . . . . . . . . . . . 13 (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))
41 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = 𝑤)
42 simplr 769 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑤 = ⟨“𝑥”⟩)
4341, 42eqtrd 2774 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = ⟨“𝑥”⟩)
4443iftrued 4538 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 1)
45 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
46 1zzd 12645 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
4740, 44, 45, 46fvmptd2 7023 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 1)
48 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 = ⟨“𝑥”⟩)
4948oveq2d 7446 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
5013sselda 3994 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝑥𝐵)
5150ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑥𝐵)
52 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
5352, 10mgpbas 20157 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
5453gsumws1 18863 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5551, 54syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5649, 55eqtrd 2774 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = 𝑥)
5747, 56oveq12d 7448 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1 · 𝑥))
58 elrgspn.x . . . . . . . . . . . . 13 · = (.g𝑅)
5910, 58mulg1 19111 . . . . . . . . . . . 12 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
6051, 59syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (1 · 𝑥) = 𝑥)
6157, 60eqtrd 2774 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥)
62 eqeq1 2738 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (𝑣 = ⟨“𝑥”⟩ ↔ 𝑤 = ⟨“𝑥”⟩))
6362notbid 318 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (¬ 𝑣 = ⟨“𝑥”⟩ ↔ ¬ 𝑤 = ⟨“𝑥”⟩))
6463biimparc 479 . . . . . . . . . . . . . . 15 ((¬ 𝑤 = ⟨“𝑥”⟩ ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6564adantll 714 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6665iffalsed 4541 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
67 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
68 0zd 12622 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
6940, 66, 67, 68fvmptd2 7023 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 0)
7069oveq1d 7445 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
71 elrgspn.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Ring)
7252ringmgp 20256 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
7473ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑀 ∈ Mnd)
75 sswrd 14556 . . . . . . . . . . . . . . . . 17 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
7613, 75syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7776adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → Word 𝐴 ⊆ Word 𝐵)
7877sselda 3994 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
7978adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐵)
8053gsumwcl 18864 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8174, 79, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) ∈ 𝐵)
82 eqid 2734 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
8310, 82, 58mulg0 19104 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8481, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8570, 84eqtrd 2774 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8638, 39, 61, 85ifbothda 4568 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
8786mpteq2dva 5247 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
8887oveq2d 7446 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))))
89 ringmnd 20260 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9071, 89syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
9190adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ Mnd)
92 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
9392s1cld 14637 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨“𝑥”⟩ ∈ Word 𝐴)
94 eqid 2734 . . . . . . . 8 (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
9513, 10sseqtrdi 4045 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝑅))
9695sselda 3994 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ (Base‘𝑅))
9782, 91, 17, 93, 94, 96gsummptif1n0 19998 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))) = 𝑥)
9888, 97eqtr2d 2775 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
996, 37, 98rspcedvdw 3624 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
1001, 99, 92elrnmptd 5976 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
101 elrgspnlem1.1 . . . 4 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102100, 101eleqtrrdi 2849 . . 3 ((𝜑𝑥𝐴) → 𝑥𝑆)
103102ex 412 . 2 (𝜑 → (𝑥𝐴𝑥𝑆))
104103ssrdv 4000 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  ifcif 4530  {csn 4630   class class class wbr 5147  cmpt 5230  ran crn 5689  Fun wfun 6556  cfv 6562  (class class class)co 7430   supp csupp 8183  m cmap 8864  Fincfn 8983   finSupp cfsupp 9398  0cc0 11152  1c1 11153  cz 12610  Word cword 14548  ⟨“cs1 14629  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759  .gcmg 19097  mulGrpcmgp 20151  Ringcrg 20250  RingSpancrgspn 20626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-word 14549  df-s1 14630  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-mgp 20152  df-ring 20252
This theorem is referenced by:  elrgspnlem4  33234
  Copyright terms: Public domain W3C validator