Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem3 Structured version   Visualization version   GIF version

Theorem elrgspnlem3 33185
Description: Lemma for elrgspn 33187. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem3 (𝜑𝐴𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem3
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2 fveq1 6821 . . . . . . . . . 10 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤))
32oveq1d 7364 . . . . . . . . 9 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))
43mpteq2dv 5186 . . . . . . . 8 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))
54oveq2d 7365 . . . . . . 7 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
65eqeq2d 2740 . . . . . 6 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))))
7 breq1 5095 . . . . . . . 8 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0))
8 zex 12480 . . . . . . . . . 10 ℤ ∈ V
98a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → ℤ ∈ V)
10 elrgspn.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑅)
1110fvexi 6836 . . . . . . . . . . . . 13 𝐵 ∈ V
1211a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
13 elrgspn.a . . . . . . . . . . . 12 (𝜑𝐴𝐵)
1412, 13ssexd 5263 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
15 wrdexg 14431 . . . . . . . . . . 11 (𝐴 ∈ V → Word 𝐴 ∈ V)
1614, 15syl 17 . . . . . . . . . 10 (𝜑 → Word 𝐴 ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → Word 𝐴 ∈ V)
18 1zzd 12506 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑣 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
19 0zd 12483 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ ¬ 𝑣 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
2018, 19ifclda 4512 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) ∈ ℤ)
2120fmpttd 7049 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)):Word 𝐴⟶ℤ)
229, 17, 21elmapdd 8768 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ (ℤ ↑m Word 𝐴))
2322elexd 3460 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V)
2421ffund 6656 . . . . . . . . 9 ((𝜑𝑥𝐴) → Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)))
25 0zd 12483 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ∈ ℤ)
26 snfi 8968 . . . . . . . . . 10 {⟨“𝑥”⟩} ∈ Fin
2726a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → {⟨“𝑥”⟩} ∈ Fin)
28 eldifsni 4741 . . . . . . . . . . . . 13 (𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩}) → 𝑣 ≠ ⟨“𝑥”⟩)
2928adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → 𝑣 ≠ ⟨“𝑥”⟩)
3029neneqd 2930 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → ¬ 𝑣 = ⟨“𝑥”⟩)
3130iffalsed 4487 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
3231, 17suppss2 8133 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})
33 suppssfifsupp 9270 . . . . . . . . 9 ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V ∧ Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∧ 0 ∈ ℤ) ∧ ({⟨“𝑥”⟩} ∈ Fin ∧ ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
3423, 24, 25, 27, 32, 33syl32anc 1380 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
357, 22, 34elrabd 3650 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
36 elrgspn.f . . . . . . 7 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
3735, 36eleqtrrdi 2839 . . . . . 6 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ 𝐹)
38 eqeq2 2741 . . . . . . . . . 10 (𝑥 = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥 ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
39 eqeq2 2741 . . . . . . . . . 10 ((0g𝑅) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
40 eqid 2729 . . . . . . . . . . . . 13 (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))
41 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = 𝑤)
42 simplr 768 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑤 = ⟨“𝑥”⟩)
4341, 42eqtrd 2764 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = ⟨“𝑥”⟩)
4443iftrued 4484 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 1)
45 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
46 1zzd 12506 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
4740, 44, 45, 46fvmptd2 6938 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 1)
48 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 = ⟨“𝑥”⟩)
4948oveq2d 7365 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
5013sselda 3935 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝑥𝐵)
5150ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑥𝐵)
52 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
5352, 10mgpbas 20030 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
5453gsumws1 18712 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5551, 54syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5649, 55eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = 𝑥)
5747, 56oveq12d 7367 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1 · 𝑥))
58 elrgspn.x . . . . . . . . . . . . 13 · = (.g𝑅)
5910, 58mulg1 18960 . . . . . . . . . . . 12 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
6051, 59syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (1 · 𝑥) = 𝑥)
6157, 60eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥)
62 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (𝑣 = ⟨“𝑥”⟩ ↔ 𝑤 = ⟨“𝑥”⟩))
6362notbid 318 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (¬ 𝑣 = ⟨“𝑥”⟩ ↔ ¬ 𝑤 = ⟨“𝑥”⟩))
6463biimparc 479 . . . . . . . . . . . . . . 15 ((¬ 𝑤 = ⟨“𝑥”⟩ ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6564adantll 714 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6665iffalsed 4487 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
67 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
68 0zd 12483 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
6940, 66, 67, 68fvmptd2 6938 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 0)
7069oveq1d 7364 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
71 elrgspn.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Ring)
7252ringmgp 20124 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
7473ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑀 ∈ Mnd)
75 sswrd 14429 . . . . . . . . . . . . . . . . 17 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
7613, 75syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7776adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → Word 𝐴 ⊆ Word 𝐵)
7877sselda 3935 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
7978adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐵)
8053gsumwcl 18713 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8174, 79, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) ∈ 𝐵)
82 eqid 2729 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
8310, 82, 58mulg0 18953 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8481, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8570, 84eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8638, 39, 61, 85ifbothda 4515 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
8786mpteq2dva 5185 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
8887oveq2d 7365 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))))
89 ringmnd 20128 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9071, 89syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
9190adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ Mnd)
92 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
9392s1cld 14510 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨“𝑥”⟩ ∈ Word 𝐴)
94 eqid 2729 . . . . . . . 8 (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
9513, 10sseqtrdi 3976 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝑅))
9695sselda 3935 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ (Base‘𝑅))
9782, 91, 17, 93, 94, 96gsummptif1n0 19845 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))) = 𝑥)
9888, 97eqtr2d 2765 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
996, 37, 98rspcedvdw 3580 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
1001, 99, 92elrnmptd 5905 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
101 elrgspnlem1.1 . . . 4 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102100, 101eleqtrrdi 2839 . . 3 ((𝜑𝑥𝐴) → 𝑥𝑆)
103102ex 412 . 2 (𝜑 → (𝑥𝐴𝑥𝑆))
104103ssrdv 3941 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  ran crn 5620  Fun wfun 6476  cfv 6482  (class class class)co 7349   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  0cc0 11009  1c1 11010  cz 12471  Word cword 14420  ⟨“cs1 14502  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  .gcmg 18946  mulGrpcmgp 20025  Ringcrg 20118  RingSpancrgspn 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-word 14421  df-s1 14503  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-mgp 20026  df-ring 20120
This theorem is referenced by:  elrgspnlem4  33186
  Copyright terms: Public domain W3C validator