Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem3 Structured version   Visualization version   GIF version

Theorem elrgspnlem3 33202
Description: Lemma for elrgspn 33204. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem3 (𝜑𝐴𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem3
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2 fveq1 6860 . . . . . . . . . 10 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤))
32oveq1d 7405 . . . . . . . . 9 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))
43mpteq2dv 5204 . . . . . . . 8 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))
54oveq2d 7406 . . . . . . 7 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
65eqeq2d 2741 . . . . . 6 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))))
7 breq1 5113 . . . . . . . 8 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0))
8 zex 12545 . . . . . . . . . 10 ℤ ∈ V
98a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → ℤ ∈ V)
10 elrgspn.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑅)
1110fvexi 6875 . . . . . . . . . . . . 13 𝐵 ∈ V
1211a1i 11 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
13 elrgspn.a . . . . . . . . . . . 12 (𝜑𝐴𝐵)
1412, 13ssexd 5282 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
15 wrdexg 14496 . . . . . . . . . . 11 (𝐴 ∈ V → Word 𝐴 ∈ V)
1614, 15syl 17 . . . . . . . . . 10 (𝜑 → Word 𝐴 ∈ V)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → Word 𝐴 ∈ V)
18 1zzd 12571 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑣 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
19 0zd 12548 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) ∧ ¬ 𝑣 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
2018, 19ifclda 4527 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ Word 𝐴) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) ∈ ℤ)
2120fmpttd 7090 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)):Word 𝐴⟶ℤ)
229, 17, 21elmapdd 8817 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ (ℤ ↑m Word 𝐴))
2322elexd 3474 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V)
2421ffund 6695 . . . . . . . . 9 ((𝜑𝑥𝐴) → Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)))
25 0zd 12548 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ∈ ℤ)
26 snfi 9017 . . . . . . . . . 10 {⟨“𝑥”⟩} ∈ Fin
2726a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → {⟨“𝑥”⟩} ∈ Fin)
28 eldifsni 4757 . . . . . . . . . . . . 13 (𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩}) → 𝑣 ≠ ⟨“𝑥”⟩)
2928adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → 𝑣 ≠ ⟨“𝑥”⟩)
3029neneqd 2931 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → ¬ 𝑣 = ⟨“𝑥”⟩)
3130iffalsed 4502 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣 ∈ (Word 𝐴 ∖ {⟨“𝑥”⟩})) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
3231, 17suppss2 8182 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})
33 suppssfifsupp 9338 . . . . . . . . 9 ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ V ∧ Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∧ 0 ∈ ℤ) ∧ ({⟨“𝑥”⟩} ∈ Fin ∧ ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) supp 0) ⊆ {⟨“𝑥”⟩})) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
3423, 24, 25, 27, 32, 33syl32anc 1380 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) finSupp 0)
357, 22, 34elrabd 3664 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
36 elrgspn.f . . . . . . 7 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
3735, 36eleqtrrdi 2840 . . . . . 6 ((𝜑𝑥𝐴) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) ∈ 𝐹)
38 eqeq2 2742 . . . . . . . . . 10 (𝑥 = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥 ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
39 eqeq2 2742 . . . . . . . . . 10 ((0g𝑅) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
40 eqid 2730 . . . . . . . . . . . . 13 (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0)) = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))
41 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = 𝑤)
42 simplr 768 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑤 = ⟨“𝑥”⟩)
4341, 42eqtrd 2765 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → 𝑣 = ⟨“𝑥”⟩)
4443iftrued 4499 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 1)
45 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
46 1zzd 12571 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 1 ∈ ℤ)
4740, 44, 45, 46fvmptd2 6979 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 1)
48 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑤 = ⟨“𝑥”⟩)
4948oveq2d 7406 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
5013sselda 3949 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝑥𝐵)
5150ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → 𝑥𝐵)
52 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
5352, 10mgpbas 20061 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
5453gsumws1 18772 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5551, 54syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
5649, 55eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) = 𝑥)
5747, 56oveq12d 7408 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1 · 𝑥))
58 elrgspn.x . . . . . . . . . . . . 13 · = (.g𝑅)
5910, 58mulg1 19020 . . . . . . . . . . . 12 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
6051, 59syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (1 · 𝑥) = 𝑥)
6157, 60eqtrd 2765 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = 𝑥)
62 eqeq1 2734 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (𝑣 = ⟨“𝑥”⟩ ↔ 𝑤 = ⟨“𝑥”⟩))
6362notbid 318 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (¬ 𝑣 = ⟨“𝑥”⟩ ↔ ¬ 𝑤 = ⟨“𝑥”⟩))
6463biimparc 479 . . . . . . . . . . . . . . 15 ((¬ 𝑤 = ⟨“𝑥”⟩ ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6564adantll 714 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ⟨“𝑥”⟩)
6665iffalsed 4502 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) ∧ 𝑣 = 𝑤) → if(𝑣 = ⟨“𝑥”⟩, 1, 0) = 0)
67 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐴)
68 0zd 12548 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 0 ∈ ℤ)
6940, 66, 67, 68fvmptd2 6979 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) = 0)
7069oveq1d 7405 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
71 elrgspn.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Ring)
7252ringmgp 20155 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
7473ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑀 ∈ Mnd)
75 sswrd 14494 . . . . . . . . . . . . . . . . 17 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
7613, 75syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7776adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → Word 𝐴 ⊆ Word 𝐵)
7877sselda 3949 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
7978adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → 𝑤 ∈ Word 𝐵)
8053gsumwcl 18773 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8174, 79, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (𝑀 Σg 𝑤) ∈ 𝐵)
82 eqid 2730 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
8310, 82, 58mulg0 19013 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8481, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8570, 84eqtrd 2765 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ⟨“𝑥”⟩) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8638, 39, 61, 85ifbothda 4530 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑤 ∈ Word 𝐴) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
8786mpteq2dva 5203 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))))
8887oveq2d 7406 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))))
89 ringmnd 20159 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
9071, 89syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
9190adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ Mnd)
92 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
9392s1cld 14575 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨“𝑥”⟩ ∈ Word 𝐴)
94 eqid 2730 . . . . . . . 8 (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))
9513, 10sseqtrdi 3990 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝑅))
9695sselda 3949 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ (Base‘𝑅))
9782, 91, 17, 93, 94, 96gsummptif1n0 19903 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ⟨“𝑥”⟩, 𝑥, (0g𝑅)))) = 𝑥)
9888, 97eqtr2d 2766 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ⟨“𝑥”⟩, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
996, 37, 98rspcedvdw 3594 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
1001, 99, 92elrnmptd 5930 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
101 elrgspnlem1.1 . . . 4 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102100, 101eleqtrrdi 2840 . . 3 ((𝜑𝑥𝐴) → 𝑥𝑆)
103102ex 412 . 2 (𝜑 → (𝑥𝐴𝑥𝑆))
104103ssrdv 3955 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  ran crn 5642  Fun wfun 6508  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  1c1 11076  cz 12536  Word cword 14485  ⟨“cs1 14567  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  RingSpancrgspn 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-s1 14568  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-mgp 20057  df-ring 20151
This theorem is referenced by:  elrgspnlem4  33203
  Copyright terms: Public domain W3C validator