Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord2a Structured version   Visualization version   GIF version

Theorem dihord2a 39672
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dihjust.b 𝐵 = (Base‘𝐾)
dihjust.l = (le‘𝐾)
dihjust.j = (join‘𝐾)
dihjust.m = (meet‘𝐾)
dihjust.a 𝐴 = (Atoms‘𝐾)
dihjust.h 𝐻 = (LHyp‘𝐾)
dihjust.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dihjust.J 𝐽 = ((DIsoC‘𝐾)‘𝑊)
dihjust.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjust.s = (LSSum‘𝑈)
Assertion
Ref Expression
dihord2a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑄 (𝑅 (𝑌 𝑊)))

Proof of Theorem dihord2a
StepHypRef Expression
1 dihjust.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dihjust.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 simp11 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 39563 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑈 ∈ LMod)
5 eqid 2736 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
65lsssssubg 20417 . . . . . 6 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
74, 6syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
8 simp12 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 dihjust.l . . . . . . 7 = (le‘𝐾)
10 dihjust.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
11 dihjust.J . . . . . . 7 𝐽 = ((DIsoC‘𝐾)‘𝑊)
129, 10, 1, 2, 11, 5diclss 39646 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
133, 8, 12syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
147, 13sseldd 3945 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐽𝑄) ∈ (SubGrp‘𝑈))
15 simp11l 1284 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝐾 ∈ HL)
1615hllatd 37816 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝐾 ∈ Lat)
17 simp2l 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑋𝐵)
18 simp11r 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑊𝐻)
19 dihjust.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2019, 1lhpbase 38451 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑊𝐵)
22 dihjust.m . . . . . . . 8 = (meet‘𝐾)
2319, 22latmcl 18328 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2416, 17, 21, 23syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑋 𝑊) ∈ 𝐵)
2519, 9, 22latmle2 18353 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2616, 17, 21, 25syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑋 𝑊) 𝑊)
27 dihjust.i . . . . . . 7 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2819, 9, 1, 2, 27, 5diblss 39623 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝐼‘(𝑋 𝑊)) ∈ (LSubSp‘𝑈))
293, 24, 26, 28syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐼‘(𝑋 𝑊)) ∈ (LSubSp‘𝑈))
307, 29sseldd 3945 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐼‘(𝑋 𝑊)) ∈ (SubGrp‘𝑈))
31 dihjust.s . . . . 5 = (LSSum‘𝑈)
3231lsmub1 19437 . . . 4 (((𝐽𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑋 𝑊)) ∈ (SubGrp‘𝑈)) → (𝐽𝑄) ⊆ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))))
3314, 30, 32syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐽𝑄) ⊆ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))))
34 simp33 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
3533, 34sstrd 3954 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
36 simp13 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
37 simp2r 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑌𝐵)
3819, 22latmcl 18328 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
3916, 37, 21, 38syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑌 𝑊) ∈ 𝐵)
4019, 9, 22latmle2 18353 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) 𝑊)
4116, 37, 21, 40syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑌 𝑊) 𝑊)
4239, 41jca 512 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊))
43 dihjust.j . . . 4 = (join‘𝐾)
4419, 9, 43, 10, 1, 27, 11, 2, 31cdlemn 39665 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊))) → (𝑄 (𝑅 (𝑌 𝑊)) ↔ (𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))))
453, 36, 8, 42, 44syl13anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → (𝑄 (𝑅 (𝑌 𝑊)) ↔ (𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))))
4635, 45mpbird 256 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌 ∧ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))) → 𝑄 (𝑅 (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7356  Basecbs 17082  lecple 17139  joincjn 18199  meetcmee 18200  Latclat 18319  SubGrpcsubg 18920  LSSumclsm 19414  LModclmod 20320  LSubSpclss 20390  Atomscatm 37715  HLchlt 37802  LHypclh 38437  DVecHcdvh 39531  DIsoBcdib 39591  DIsoCcdic 39625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-riotaBAD 37405
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-1st 7920  df-2nd 7921  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-er 8647  df-map 8766  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-n0 12413  df-z 12499  df-uz 12763  df-fz 13424  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-sca 17148  df-vsca 17149  df-0g 17322  df-proset 18183  df-poset 18201  df-plt 18218  df-lub 18234  df-glb 18235  df-join 18236  df-meet 18237  df-p0 18313  df-p1 18314  df-lat 18320  df-clat 18387  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-submnd 18601  df-grp 18750  df-minusg 18751  df-sbg 18752  df-subg 18923  df-cntz 19095  df-lsm 19416  df-cmn 19562  df-abl 19563  df-mgp 19895  df-ur 19912  df-ring 19964  df-oppr 20047  df-dvdsr 20068  df-unit 20069  df-invr 20099  df-dvr 20110  df-drng 20185  df-lmod 20322  df-lss 20391  df-lsp 20431  df-lvec 20562  df-oposet 37628  df-ol 37630  df-oml 37631  df-covers 37718  df-ats 37719  df-atl 37750  df-cvlat 37774  df-hlat 37803  df-llines 37951  df-lplanes 37952  df-lvols 37953  df-lines 37954  df-psubsp 37956  df-pmap 37957  df-padd 38249  df-lhyp 38441  df-laut 38442  df-ldil 38557  df-ltrn 38558  df-trl 38612  df-tendo 39208  df-edring 39210  df-disoa 39482  df-dvech 39532  df-dib 39592  df-dic 39626
This theorem is referenced by:  dihord2pre2  39679
  Copyright terms: Public domain W3C validator