Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1pwle | Structured version Visualization version GIF version |
Description: Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
deg1pw.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1pw.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1pw.x | ⊢ 𝑋 = (var1‘𝑅) |
deg1pw.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
deg1pw.e | ⊢ ↑ = (.g‘𝑁) |
Ref | Expression |
---|---|
deg1pwle | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1pw.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1lmod 21333 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
3 | deg1pw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
4 | deg1pw.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑃) | |
5 | deg1pw.e | . . . . 5 ⊢ ↑ = (.g‘𝑁) | |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | 1, 3, 4, 5, 6 | ply1moncl 21352 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐹 ↑ 𝑋) ∈ (Base‘𝑃)) |
8 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
9 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
10 | eqid 2738 | . . . . 5 ⊢ (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃)) | |
11 | 6, 8, 9, 10 | lmodvs1 20066 | . . . 4 ⊢ ((𝑃 ∈ LMod ∧ (𝐹 ↑ 𝑋) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋)) = (𝐹 ↑ 𝑋)) |
12 | 2, 7, 11 | syl2an2r 681 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋)) = (𝐹 ↑ 𝑋)) |
13 | 12 | fveq2d 6760 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) = (𝐷‘(𝐹 ↑ 𝑋))) |
14 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → 𝑅 ∈ Ring) | |
15 | 1 | ply1sca 21334 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
16 | 15 | fveq2d 6760 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (1r‘(Scalar‘𝑃))) |
17 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | 17, 18 | ringidcl 19722 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
20 | 16, 19 | eqeltrrd 2840 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅)) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅)) |
22 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℕ0) | |
23 | deg1pw.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
24 | 23, 17, 1, 3, 9, 4, 5 | deg1tmle 25187 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) ≤ 𝐹) |
25 | 14, 21, 22, 24 | syl3anc 1369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) ≤ 𝐹) |
26 | 13, 25 | eqbrtrrd 5094 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≤ cle 10941 ℕ0cn0 12163 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 .gcmg 18615 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 LModclmod 20038 var1cv1 21257 Poly1cpl1 21258 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-cnfld 20511 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: hbtlem4 40867 |
Copyright terms: Public domain | W3C validator |