![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1pwle | Structured version Visualization version GIF version |
Description: Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
deg1pw.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1pw.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1pw.x | ⊢ 𝑋 = (var1‘𝑅) |
deg1pw.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
deg1pw.e | ⊢ ↑ = (.g‘𝑁) |
Ref | Expression |
---|---|
deg1pwle | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1pw.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1lmod 20029 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
3 | 2 | adantr 474 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → 𝑃 ∈ LMod) |
4 | deg1pw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
5 | deg1pw.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑃) | |
6 | deg1pw.e | . . . . 5 ⊢ ↑ = (.g‘𝑁) | |
7 | eqid 2778 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
8 | 1, 4, 5, 6, 7 | ply1moncl 20048 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐹 ↑ 𝑋) ∈ (Base‘𝑃)) |
9 | eqid 2778 | . . . . 5 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
10 | eqid 2778 | . . . . 5 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
11 | eqid 2778 | . . . . 5 ⊢ (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃)) | |
12 | 7, 9, 10, 11 | lmodvs1 19294 | . . . 4 ⊢ ((𝑃 ∈ LMod ∧ (𝐹 ↑ 𝑋) ∈ (Base‘𝑃)) → ((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋)) = (𝐹 ↑ 𝑋)) |
13 | 3, 8, 12 | syl2anc 579 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → ((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋)) = (𝐹 ↑ 𝑋)) |
14 | 13 | fveq2d 6452 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) = (𝐷‘(𝐹 ↑ 𝑋))) |
15 | simpl 476 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → 𝑅 ∈ Ring) | |
16 | 1 | ply1sca 20030 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
17 | 16 | fveq2d 6452 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (1r‘(Scalar‘𝑃))) |
18 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
19 | eqid 2778 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
20 | 18, 19 | ringidcl 18966 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
21 | 17, 20 | eqeltrrd 2860 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅)) |
22 | 21 | adantr 474 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅)) |
23 | simpr 479 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℕ0) | |
24 | deg1pw.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
25 | 24, 18, 1, 4, 10, 5, 6 | deg1tmle 24325 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘(Scalar‘𝑃)) ∈ (Base‘𝑅) ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) ≤ 𝐹) |
26 | 15, 22, 23, 25 | syl3anc 1439 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘((1r‘(Scalar‘𝑃))( ·𝑠 ‘𝑃)(𝐹 ↑ 𝑋))) ≤ 𝐹) |
27 | 14, 26 | eqbrtrrd 4912 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ≤ cle 10414 ℕ0cn0 11647 Basecbs 16266 Scalarcsca 16352 ·𝑠 cvsca 16353 .gcmg 17938 mulGrpcmgp 18887 1rcur 18899 Ringcrg 18945 LModclmod 19266 var1cv1 19953 Poly1cpl1 19954 deg1 cdg1 24262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-ofr 7177 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-fzo 12790 df-seq 13125 df-hash 13442 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-starv 16364 df-sca 16365 df-vsca 16366 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-0g 16499 df-gsum 16500 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-submnd 17733 df-grp 17823 df-minusg 17824 df-sbg 17825 df-mulg 17939 df-subg 17986 df-ghm 18053 df-cntz 18144 df-cmn 18592 df-abl 18593 df-mgp 18888 df-ur 18900 df-ring 18947 df-cring 18948 df-subrg 19181 df-lmod 19268 df-lss 19336 df-psr 19764 df-mvr 19765 df-mpl 19766 df-opsr 19768 df-psr1 19957 df-vr1 19958 df-ply1 19959 df-coe1 19960 df-cnfld 20154 df-mdeg 24263 df-deg1 24264 |
This theorem is referenced by: hbtlem4 38669 |
Copyright terms: Public domain | W3C validator |