| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8c | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8c.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8c.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8c.a | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = 𝐸) |
| mapdh8c.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8c.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8c.xt | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8c.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8c.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdh8c.wt | ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
| mapdh8c.ut | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| mapdh8c.vw | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| mapdh8c.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
| mapdh8c.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| Ref | Expression |
|---|---|
| mapdh8c | ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh8c.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh8c.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdh8c.a | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = 𝐸) | |
| 18 | mapdh8c.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 19 | mapdh8c.w | . 2 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh8c.wt | . 2 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) | |
| 21 | mapdh8c.xt | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 1, 2, 14 | dvhlvec 41148 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 23 | 18 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 24 | mapdh8c.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 25 | 24 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 26 | 19 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 27 | mapdh8c.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) | |
| 28 | 3, 6, 22, 23, 25, 26, 27 | lspindpi 21064 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))) |
| 29 | 28 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})) |
| 30 | 21 | eldifad 3909 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 31 | mapdh8c.ut | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
| 32 | mapdh8c.e | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
| 33 | 3, 5, 6, 22, 18, 25, 30, 31, 32 | lspexch 21061 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑇})) |
| 34 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑈 ∈ LVec) |
| 35 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 36 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑋 ∈ 𝑉) |
| 37 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑤 ∈ 𝑉) |
| 38 | mapdh8c.vw | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) | |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| 40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) | |
| 41 | 3, 5, 6, 34, 35, 36, 37, 39, 40 | lspexch 21061 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| 42 | 27, 41 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑤})) |
| 43 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 29, 33, 42 | mapdh8b 41819 | 1 ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ifcif 4470 {csn 4571 {cpr 4573 〈cotp 4579 ↦ cmpt 5167 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 0gc0g 17338 -gcsg 18843 LSpanclspn 20899 LVecclvec 21031 HLchlt 39389 LHypclh 40023 DVecHcdvh 41117 LCDualclcd 41625 mapdcmpd 41663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-riotaBAD 38992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-0g 17340 df-mre 17483 df-mrc 17484 df-acs 17486 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-p1 18325 df-lat 18333 df-clat 18400 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19224 df-oppg 19253 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-nzr 20423 df-rlreg 20604 df-domn 20605 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 df-lsatoms 39015 df-lshyp 39016 df-lcv 39058 df-lfl 39097 df-lkr 39125 df-ldual 39163 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-llines 39537 df-lplanes 39538 df-lvols 39539 df-lines 39540 df-psubsp 39542 df-pmap 39543 df-padd 39835 df-lhyp 40027 df-laut 40028 df-ldil 40143 df-ltrn 40144 df-trl 40198 df-tgrp 40782 df-tendo 40794 df-edring 40796 df-dveca 41042 df-disoa 41068 df-dvech 41118 df-dib 41178 df-dic 41212 df-dih 41268 df-doch 41387 df-djh 41434 df-lcdual 41626 df-mapd 41664 |
| This theorem is referenced by: mapdh8d0N 41821 mapdh8d 41822 |
| Copyright terms: Public domain | W3C validator |