Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh75fN Structured version   Visualization version   GIF version

Theorem mapdh75fN 41779
Description: Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh75.h 𝐻 = (LHyp‘𝐾)
mapdh75.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh75.v 𝑉 = (Base‘𝑈)
mapdh75.s = (-g𝑈)
mapdh75.o 0 = (0g𝑈)
mapdh75.n 𝑁 = (LSpan‘𝑈)
mapdh75.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh75.d 𝐷 = (Base‘𝐶)
mapdh75.r 𝑅 = (-g𝐶)
mapdh75.q 𝑄 = (0g𝐶)
mapdh75.j 𝐽 = (LSpan‘𝐶)
mapdh75.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh75.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh75.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh75.f (𝜑𝐹𝐷)
mapdh75.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh75a (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh75d.b (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh75d.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh75d.un (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh75d.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh75d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh75d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh75fN (𝜑 → (𝐼‘⟨𝑍, 𝐸, 𝑌⟩) = 𝐺)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑅,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh75fN
StepHypRef Expression
1 mapdh75.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh75.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh75.v . 2 𝑉 = (Base‘𝑈)
4 mapdh75.s . 2 = (-g𝑈)
5 mapdh75.o . 2 0 = (0g𝑈)
6 mapdh75.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh75.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh75.d . 2 𝐷 = (Base‘𝐶)
9 mapdh75.r . 2 𝑅 = (-g𝐶)
10 mapdh75.q . 2 𝑄 = (0g𝐶)
11 mapdh75.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh75.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh75.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh75.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh75a . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
16 mapdh75.f . . . 4 (𝜑𝐹𝐷)
17 mapdh75.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdh75d.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh75d.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3943 . . . 4 (𝜑𝑌𝑉)
211, 2, 14dvhlvec 41133 . . . . . 6 (𝜑𝑈 ∈ LVec)
2218eldifad 3943 . . . . . 6 (𝜑𝑋𝑉)
23 mapdh75d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3943 . . . . . 6 (𝜑𝑍𝑉)
25 mapdh75d.un . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
263, 6, 21, 22, 20, 24, 25lspindpi 21098 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2726simpld 494 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20, 27mapdhcl 41751 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
2915, 28eqeltrrd 2836 . 2 (𝜑𝐺𝐷)
3010, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 29, 27mapdheq 41752 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3115, 30mpbid 232 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3231simpld 494 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
33 mapdh75d.b . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
34 mapdh75d.vw . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 15, 33, 34, 25, 18, 19, 23mapdh75d 41778 . 2 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑍⟩) = 𝐸)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 29, 32, 35, 34, 19, 23mapdh75e 41776 1 (𝜑 → (𝐼‘⟨𝑍, 𝐸, 𝑌⟩) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  ifcif 4505  {csn 4606  {cpr 4608  cotp 4614  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  0gc0g 17458  -gcsg 18923  LSpanclspn 20933  HLchlt 39373  LHypclh 40008  DVecHcdvh 41102  LCDualclcd 41610  mapdcmpd 41648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-nzr 20478  df-rlreg 20659  df-domn 20660  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-lshyp 39000  df-lcv 39042  df-lfl 39081  df-lkr 39109  df-ldual 39147  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tgrp 40767  df-tendo 40779  df-edring 40781  df-dveca 41027  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253  df-doch 41372  df-djh 41419  df-lcdual 41611  df-mapd 41649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator