Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh75fN | Structured version Visualization version GIF version |
Description: Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh75.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh75.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh75.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh75.s | ⊢ − = (-g‘𝑈) |
mapdh75.o | ⊢ 0 = (0g‘𝑈) |
mapdh75.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh75.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh75.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh75.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh75.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh75.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh75.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh75.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh75.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh75.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh75.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh75a | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh75d.b | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
mapdh75d.vw | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
mapdh75d.un | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh75d.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh75d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh75d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
mapdh75fN | ⊢ (𝜑 → (𝐼‘〈𝑍, 𝐸, 𝑌〉) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh75.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh75.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh75.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh75.s | . 2 ⊢ − = (-g‘𝑈) | |
5 | mapdh75.o | . 2 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh75.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh75.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh75.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh75.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh75.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh75.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh75.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh75.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh75.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh75a | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
16 | mapdh75.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | mapdh75.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
18 | mapdh75d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | mapdh75d.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
20 | 19 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
21 | 1, 2, 14 | dvhlvec 39344 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
22 | 18 | eldifad 3909 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
23 | mapdh75d.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
24 | 23 | eldifad 3909 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
25 | mapdh75d.un | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
26 | 3, 6, 21, 22, 20, 24, 25 | lspindpi 20477 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
27 | 26 | simpld 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
28 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20, 27 | mapdhcl 39962 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
29 | 15, 28 | eqeltrrd 2839 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
30 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 29, 27 | mapdheq 39963 | . . . 4 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
31 | 15, 30 | mpbid 231 | . . 3 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
32 | 31 | simpld 495 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
33 | mapdh75d.b | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
34 | mapdh75d.vw | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 15, 33, 34, 25, 18, 19, 23 | mapdh75d 39989 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑍〉) = 𝐸) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 29, 32, 35, 34, 19, 23 | mapdh75e 39987 | 1 ⊢ (𝜑 → (𝐼‘〈𝑍, 𝐸, 𝑌〉) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∖ cdif 3894 ifcif 4471 {csn 4571 {cpr 4573 〈cotp 4579 ↦ cmpt 5170 ‘cfv 6466 ℩crio 7273 (class class class)co 7317 1st c1st 7876 2nd c2nd 7877 Basecbs 16989 0gc0g 17227 -gcsg 18655 LSpanclspn 20316 HLchlt 37584 LHypclh 38219 DVecHcdvh 39313 LCDualclcd 39821 mapdcmpd 39859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-riotaBAD 37187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-undef 8138 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-sca 17055 df-vsca 17056 df-0g 17229 df-mre 17372 df-mrc 17373 df-acs 17375 df-proset 18090 df-poset 18108 df-plt 18125 df-lub 18141 df-glb 18142 df-join 18143 df-meet 18144 df-p0 18220 df-p1 18221 df-lat 18227 df-clat 18294 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-grp 18656 df-minusg 18657 df-sbg 18658 df-subg 18828 df-cntz 18999 df-oppg 19026 df-lsm 19317 df-cmn 19463 df-abl 19464 df-mgp 19796 df-ur 19813 df-ring 19860 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-dvr 20000 df-drng 20072 df-lmod 20208 df-lss 20277 df-lsp 20317 df-lvec 20448 df-lsatoms 37210 df-lshyp 37211 df-lcv 37253 df-lfl 37292 df-lkr 37320 df-ldual 37358 df-oposet 37410 df-ol 37412 df-oml 37413 df-covers 37500 df-ats 37501 df-atl 37532 df-cvlat 37556 df-hlat 37585 df-llines 37733 df-lplanes 37734 df-lvols 37735 df-lines 37736 df-psubsp 37738 df-pmap 37739 df-padd 38031 df-lhyp 38223 df-laut 38224 df-ldil 38339 df-ltrn 38340 df-trl 38394 df-tgrp 38978 df-tendo 38990 df-edring 38992 df-dveca 39238 df-disoa 39264 df-dvech 39314 df-dib 39374 df-dic 39408 df-dih 39464 df-doch 39583 df-djh 39630 df-lcdual 39822 df-mapd 39860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |