| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh7fN | Structured version Visualization version GIF version | ||
| Description: Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh7.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh7.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh7.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh7.s | ⊢ − = (-g‘𝑈) |
| mapdh7.o | ⊢ 0 = (0g‘𝑈) |
| mapdh7.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh7.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh7.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh7.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh7.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh7.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh7.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh7.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh7.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh7.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh7.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹})) |
| mapdh7.x | ⊢ (𝜑 → 𝑢 ∈ (𝑉 ∖ { 0 })) |
| mapdh7.y | ⊢ (𝜑 → 𝑣 ∈ (𝑉 ∖ { 0 })) |
| mapdh7.z | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdh7.ne | ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣})) |
| mapdh7.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣})) |
| mapdh7a | ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑣〉) = 𝐺) |
| mapdh7.b | ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑤〉) = 𝐸) |
| Ref | Expression |
|---|---|
| mapdh7fN | ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑣〉) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh7.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh7.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh7.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh7.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh7.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh7.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh7.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh7.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh7.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh7.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh7.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh7.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh7.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh7.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh7.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh7.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹})) | |
| 17 | mapdh7.x | . . 3 ⊢ (𝜑 → 𝑢 ∈ (𝑉 ∖ { 0 })) | |
| 18 | mapdh7.y | . . 3 ⊢ (𝜑 → 𝑣 ∈ (𝑉 ∖ { 0 })) | |
| 19 | mapdh7.z | . . 3 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh7.ne | . . 3 ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣})) | |
| 21 | mapdh7.wn | . . 3 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣})) | |
| 22 | mapdh7a | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑣〉) = 𝐺) | |
| 23 | mapdh7.b | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑤〉) = 𝐸) | |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | mapdh7dN 41751 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑣, 𝐺, 𝑤〉) = 𝐸) |
| 25 | 18 | eldifad 3929 | . . . . 5 ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
| 26 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 25, 20 | mapdhcl 41728 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑣〉) ∈ 𝐷) |
| 27 | 22, 26 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
| 28 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 18, 27, 20 | mapdheq 41729 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑢, 𝐹, 𝑣〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑢 − 𝑣)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
| 29 | 22, 28 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑢 − 𝑣)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
| 30 | 29 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺})) |
| 31 | 19 | eldifad 3929 | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 32 | 1, 2, 14 | dvhlvec 41110 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 33 | 17 | eldifad 3929 | . . . . . . . 8 ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
| 34 | 3, 6, 32, 31, 33, 25, 21 | lspindpi 21049 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}))) |
| 35 | 34 | simpld 494 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑢})) |
| 36 | 35 | necomd 2981 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑤})) |
| 37 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 31, 36 | mapdhcl 41728 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑢, 𝐹, 𝑤〉) ∈ 𝐷) |
| 38 | 23, 37 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐷) |
| 39 | 34 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣})) |
| 40 | 39 | necomd 2981 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (𝑁‘{𝑤})) |
| 41 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 27, 30, 18, 19, 38, 40 | mapdheq2 41730 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑣, 𝐺, 𝑤〉) = 𝐸 → (𝐼‘〈𝑤, 𝐸, 𝑣〉) = 𝐺)) |
| 42 | 24, 41 | mpd 15 | 1 ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑣〉) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3914 ifcif 4491 {csn 4592 {cpr 4594 〈cotp 4600 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 0gc0g 17409 -gcsg 18874 LSpanclspn 20884 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 LCDualclcd 41587 mapdcmpd 41625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17411 df-mre 17554 df-mrc 17555 df-acs 17557 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20429 df-rlreg 20610 df-domn 20611 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lsatoms 38976 df-lshyp 38977 df-lcv 39019 df-lfl 39058 df-lkr 39086 df-ldual 39124 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tgrp 40744 df-tendo 40756 df-edring 40758 df-dveca 41004 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 df-doch 41349 df-djh 41396 df-lcdual 41588 df-mapd 41626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |