Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7fN Structured version   Visualization version   GIF version

Theorem mapdh7fN 39040
Description: Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h 𝐻 = (LHyp‘𝐾)
mapdh7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh7.v 𝑉 = (Base‘𝑈)
mapdh7.s = (-g𝑈)
mapdh7.o 0 = (0g𝑈)
mapdh7.n 𝑁 = (LSpan‘𝑈)
mapdh7.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh7.d 𝐷 = (Base‘𝐶)
mapdh7.r 𝑅 = (-g𝐶)
mapdh7.q 𝑄 = (0g𝐶)
mapdh7.j 𝐽 = (LSpan‘𝐶)
mapdh7.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh7.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh7.f (𝜑𝐹𝐷)
mapdh7.mn (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
mapdh7.x (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
mapdh7.y (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
mapdh7.z (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh7.ne (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
mapdh7.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
mapdh7a (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
mapdh7.b (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
Assertion
Ref Expression
mapdh7fN (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑣⟩) = 𝐺)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑢,,𝑣,𝑤,𝑥   𝑅,,𝑥   𝑈,
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑤,𝑣,𝑢)   𝑄(𝑤,𝑣,𝑢,)   𝑅(𝑤,𝑣,𝑢)   𝑈(𝑥,𝑤,𝑣,𝑢)   𝐸(𝑤,𝑣,𝑢)   𝐹(𝑤,𝑣,𝑢)   𝐺(𝑤,𝑣,𝑢)   𝐻(𝑥,𝑤,𝑣,𝑢,)   𝐼(𝑥,𝑤,𝑣,𝑢,)   𝐽(𝑤,𝑣,𝑢)   𝐾(𝑥,𝑤,𝑣,𝑢,)   𝑀(𝑤,𝑣,𝑢)   (𝑤,𝑣,𝑢)   𝑁(𝑤,𝑣,𝑢)   𝑉(𝑥,𝑤,𝑣,𝑢,)   𝑊(𝑥,𝑤,𝑣,𝑢,)   0 (𝑤,𝑣,𝑢)

Proof of Theorem mapdh7fN
StepHypRef Expression
1 mapdh7.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh7.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh7.s . . 3 = (-g𝑈)
5 mapdh7.o . . 3 0 = (0g𝑈)
6 mapdh7.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdh7.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh7.d . . 3 𝐷 = (Base‘𝐶)
9 mapdh7.r . . 3 𝑅 = (-g𝐶)
10 mapdh7.q . . 3 𝑄 = (0g𝐶)
11 mapdh7.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdh7.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh7.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh7.f . . 3 (𝜑𝐹𝐷)
16 mapdh7.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
17 mapdh7.x . . 3 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
18 mapdh7.y . . 3 (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
19 mapdh7.z . . 3 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
20 mapdh7.ne . . 3 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
21 mapdh7.wn . . 3 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
22 mapdh7a . . 3 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
23 mapdh7.b . . 3 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23mapdh7dN 39039 . 2 (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸)
2518eldifad 3896 . . . . 5 (𝜑𝑣𝑉)
2610, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 25, 20mapdhcl 39016 . . . 4 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) ∈ 𝐷)
2722, 26eqeltrrd 2894 . . 3 (𝜑𝐺𝐷)
2810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 18, 27, 20mapdheq 39017 . . . . 5 (𝜑 → ((𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑢 𝑣)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
2922, 28mpbid 235 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑢 𝑣)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3029simpld 498 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐽‘{𝐺}))
3119eldifad 3896 . . . . 5 (𝜑𝑤𝑉)
321, 2, 14dvhlvec 38398 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
3317eldifad 3896 . . . . . . . 8 (𝜑𝑢𝑉)
343, 6, 32, 31, 33, 25, 21lspindpi 19900 . . . . . . 7 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣})))
3534simpld 498 . . . . . 6 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}))
3635necomd 3045 . . . . 5 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑤}))
3710, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 31, 36mapdhcl 39016 . . . 4 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) ∈ 𝐷)
3823, 37eqeltrrd 2894 . . 3 (𝜑𝐸𝐷)
3934simprd 499 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}))
4039necomd 3045 . . 3 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑁‘{𝑤}))
4110, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 27, 30, 18, 19, 38, 40mapdheq2 39018 . 2 (𝜑 → ((𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸 → (𝐼‘⟨𝑤, 𝐸, 𝑣⟩) = 𝐺))
4224, 41mpd 15 1 (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑣⟩) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444  cdif 3881  ifcif 4428  {csn 4528  {cpr 4530  cotp 4536  cmpt 5113  cfv 6328  crio 7096  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  Basecbs 16478  0gc0g 16708  -gcsg 18100  LSpanclspn 19739  HLchlt 36639  LHypclh 37273  DVecHcdvh 38367  LCDualclcd 38875  mapdcmpd 38913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-0g 16710  df-mre 16852  df-mrc 16853  df-acs 16855  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cntz 18442  df-oppg 18469  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19500  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lvec 19871  df-lsatoms 36265  df-lshyp 36266  df-lcv 36308  df-lfl 36347  df-lkr 36375  df-ldual 36413  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788  df-lvols 36789  df-lines 36790  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448  df-tgrp 38032  df-tendo 38044  df-edring 38046  df-dveca 38292  df-disoa 38318  df-dvech 38368  df-dib 38428  df-dic 38462  df-dih 38518  df-doch 38637  df-djh 38684  df-lcdual 38876  df-mapd 38914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator