Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8aa Structured version   Visualization version   GIF version

Theorem mapdh8aa 40095
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 12-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8aa.f (𝜑𝐹𝐷)
mapdh8aa.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8aa.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8aa.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8aa.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8aa.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8aa.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8aa.zt (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
mapdh8aa.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8aa.yn (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
mapdh8aa.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
mapdh8aa (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh8aa
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . 3 = (-g𝑈)
5 mapdh8a.o . . 3 0 = (0g𝑈)
6 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . 3 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . 3 𝑅 = (-g𝐶)
10 mapdh8a.q . . 3 𝑄 = (0g𝐶)
11 mapdh8a.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8aa.eg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
16 mapdh8aa.f . . . . 5 (𝜑𝐹𝐷)
17 mapdh8aa.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdh8aa.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh8aa.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3910 . . . . 5 (𝜑𝑌𝑉)
211, 2, 14dvhlvec 39428 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2218eldifad 3910 . . . . . . 7 (𝜑𝑋𝑉)
23 mapdh8aa.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3910 . . . . . . 7 (𝜑𝑍𝑉)
25 mapdh8aa.xn . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
263, 6, 21, 22, 20, 24, 25lspindpi 20501 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2726simpld 495 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20, 27mapdhcl 40046 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
2915, 28eqeltrrd 2838 . . 3 (𝜑𝐺𝐷)
3010, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 29, 27mapdheq 40047 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3115, 30mpbid 231 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3231simpld 495 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
33 mapdh8aa.ee . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
34 mapdh8aa.t . . . . . . 7 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
3534eldifad 3910 . . . . . 6 (𝜑𝑇𝑉)
36 mapdh8aa.yn . . . . . 6 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
373, 6, 21, 20, 24, 35, 36lspindpi 20501 . . . . 5 (𝜑 → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}) ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})))
3837simpld 495 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
391, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 15, 33, 38, 25, 18, 19, 23mapdh75d 40073 . . 3 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑍⟩) = 𝐸)
40 mapdh8aa.zt . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 29, 32, 39, 19, 23, 40, 34, 36mapdh8a 40094 . 2 (𝜑 → (𝐼‘⟨𝑍, 𝐸, 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
4241eqcomd 2742 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  cdif 3895  ifcif 4474  {csn 4574  {cpr 4576  cotp 4582  cmpt 5176  cfv 6480  crio 7293  (class class class)co 7338  1st c1st 7898  2nd c2nd 7899  Basecbs 17010  0gc0g 17248  -gcsg 18676  LSpanclspn 20340  HLchlt 37668  LHypclh 38303  DVecHcdvh 39397  LCDualclcd 39905  mapdcmpd 39943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-riotaBAD 37271
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4854  df-int 4896  df-iun 4944  df-iin 4945  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-of 7596  df-om 7782  df-1st 7900  df-2nd 7901  df-tpos 8113  df-undef 8160  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-n0 12336  df-z 12422  df-uz 12685  df-fz 13342  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-0g 17250  df-mre 17393  df-mrc 17394  df-acs 17396  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-p1 18242  df-lat 18248  df-clat 18315  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-subg 18849  df-cntz 19020  df-oppg 19047  df-lsm 19338  df-cmn 19484  df-abl 19485  df-mgp 19817  df-ur 19834  df-ring 19881  df-oppr 19958  df-dvdsr 19979  df-unit 19980  df-invr 20010  df-dvr 20021  df-drng 20096  df-lmod 20232  df-lss 20301  df-lsp 20341  df-lvec 20472  df-lsatoms 37294  df-lshyp 37295  df-lcv 37337  df-lfl 37376  df-lkr 37404  df-ldual 37442  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-llines 37817  df-lplanes 37818  df-lvols 37819  df-lines 37820  df-psubsp 37822  df-pmap 37823  df-padd 38115  df-lhyp 38307  df-laut 38308  df-ldil 38423  df-ltrn 38424  df-trl 38478  df-tgrp 39062  df-tendo 39074  df-edring 39076  df-dveca 39322  df-disoa 39348  df-dvech 39398  df-dib 39458  df-dic 39492  df-dih 39548  df-doch 39667  df-djh 39714  df-lcdual 39906  df-mapd 39944
This theorem is referenced by:  mapdh8ab  40096
  Copyright terms: Public domain W3C validator