Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8aa | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 12-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8aa.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8aa.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8aa.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh8aa.ee | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
mapdh8aa.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8aa.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8aa.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh8aa.zt | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
mapdh8aa.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8aa.yn | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) |
mapdh8aa.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
mapdh8aa | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh8aa.eg | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
16 | mapdh8aa.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | mapdh8aa.mn | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
18 | mapdh8aa.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | mapdh8aa.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
20 | 19 | eldifad 3910 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
21 | 1, 2, 14 | dvhlvec 39428 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LVec) |
22 | 18 | eldifad 3910 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
23 | mapdh8aa.z | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
24 | 23 | eldifad 3910 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
25 | mapdh8aa.xn | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
26 | 3, 6, 21, 22, 20, 24, 25 | lspindpi 20501 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
27 | 26 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
28 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20, 27 | mapdhcl 40046 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
29 | 15, 28 | eqeltrrd 2838 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
30 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 29, 27 | mapdheq 40047 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
31 | 15, 30 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
32 | 31 | simpld 495 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
33 | mapdh8aa.ee | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
34 | mapdh8aa.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
35 | 34 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
36 | mapdh8aa.yn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) | |
37 | 3, 6, 21, 20, 24, 35, 36 | lspindpi 20501 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}) ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))) |
38 | 37 | simpld 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
39 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 15, 33, 38, 25, 18, 19, 23 | mapdh75d 40073 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑍〉) = 𝐸) |
40 | mapdh8aa.zt | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) | |
41 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 29, 32, 39, 19, 23, 40, 34, 36 | mapdh8a 40094 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑍, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
42 | 41 | eqcomd 2742 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∖ cdif 3895 ifcif 4474 {csn 4574 {cpr 4576 〈cotp 4582 ↦ cmpt 5176 ‘cfv 6480 ℩crio 7293 (class class class)co 7338 1st c1st 7898 2nd c2nd 7899 Basecbs 17010 0gc0g 17248 -gcsg 18676 LSpanclspn 20340 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 LCDualclcd 39905 mapdcmpd 39943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-undef 8160 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-mre 17393 df-mrc 17394 df-acs 17396 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-oppg 19047 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-dvr 20021 df-drng 20096 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lvec 20472 df-lsatoms 37294 df-lshyp 37295 df-lcv 37337 df-lfl 37376 df-lkr 37404 df-ldual 37442 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tgrp 39062 df-tendo 39074 df-edring 39076 df-dveca 39322 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 df-djh 39714 df-lcdual 39906 df-mapd 39944 |
This theorem is referenced by: mapdh8ab 40096 |
Copyright terms: Public domain | W3C validator |