Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8d Structured version   Visualization version   GIF version

Theorem mapdh8d 41822
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8d.f (𝜑𝐹𝐷)
mapdh8d.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8b.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8d.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8d.xt (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8d.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh8d.wt (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
mapdh8d.ut (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8d.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
mapdh8d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
Assertion
Ref Expression
mapdh8d (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑤,,𝑥   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑇(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐺(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)

Proof of Theorem mapdh8d
StepHypRef Expression
1 mapdh8a.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . 4 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . 4 = (-g𝑈)
5 mapdh8a.o . . . 4 0 = (0g𝑈)
6 mapdh8a.n . . . 4 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
10 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
11 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8b.eg . . . . . 6 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
17 mapdh8d.f . . . . . . 7 (𝜑𝐹𝐷)
18 mapdh8d.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19 mapdh8d.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh8d.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3909 . . . . . . 7 (𝜑𝑌𝑉)
221, 2, 14dvhlvec 41148 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
2319eldifad 3909 . . . . . . . . 9 (𝜑𝑋𝑉)
24 mapdh8d.w . . . . . . . . . 10 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2524eldifad 3909 . . . . . . . . 9 (𝜑𝑤𝑉)
26 mapdh8d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
273, 6, 22, 23, 21, 25, 26lspindpi 21064 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})))
2827simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2910, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 21, 28mapdhcl 41766 . . . . . 6 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
3016, 29eqeltrrd 2832 . . . . 5 (𝜑𝐺𝐷)
3130adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐺𝐷)
3210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 20, 30, 28mapdheq 41767 . . . . . . 7 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3316, 32mpbid 232 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3433simpld 494 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
3534adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
36 mapdh8d.vw . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 16, 19, 20, 36, 24, 26mapdh8a 41814 . . . . 5 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3837adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3920adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4024adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
41 mapdh8d.wt . . . . 5 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
4241adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
43 mapdh8d.xt . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
4443adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
4536adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
46 simpr 484 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
4726adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 31, 35, 38, 39, 40, 42, 44, 45, 46, 47mapdh8b 41819 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
4917adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
5018adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
51 eqidd 2732 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
5219adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
53 mapdh8d.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
5453adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
55 mapdh8d.ut . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
5655adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 49, 50, 51, 52, 39, 44, 54, 40, 42, 56, 45, 46, 47mapdh8c 41820 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
5848, 57eqtr3d 2768 . 2 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
5914adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6017adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
6118adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6216adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
6319adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
6420adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
6553adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
6643adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
67 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 59, 60, 61, 62, 63, 64, 65, 66, 67mapdh8a 41814 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
6958, 68pm2.61dan 812 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  ifcif 4470  {csn 4571  {cpr 4573  cotp 4579  cmpt 5167  cfv 6476  crio 7297  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  0gc0g 17338  -gcsg 18843  LSpanclspn 20899  HLchlt 39389  LHypclh 40023  DVecHcdvh 41117  LCDualclcd 41625  mapdcmpd 41663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-0g 17340  df-mre 17483  df-mrc 17484  df-acs 17486  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19224  df-oppg 19253  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-nzr 20423  df-rlreg 20604  df-domn 20605  df-drng 20641  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-lsatoms 39015  df-lshyp 39016  df-lcv 39058  df-lfl 39097  df-lkr 39125  df-ldual 39163  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tgrp 40782  df-tendo 40794  df-edring 40796  df-dveca 41042  df-disoa 41068  df-dvech 41118  df-dib 41178  df-dic 41212  df-dih 41268  df-doch 41387  df-djh 41434  df-lcdual 41626  df-mapd 41664
This theorem is referenced by:  mapdh8e  41823
  Copyright terms: Public domain W3C validator