Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8d Structured version   Visualization version   GIF version

Theorem mapdh8d 41802
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8d.f (𝜑𝐹𝐷)
mapdh8d.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8b.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8d.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8d.xt (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8d.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh8d.wt (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
mapdh8d.ut (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8d.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
mapdh8d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
Assertion
Ref Expression
mapdh8d (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑤,,𝑥   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑇(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐺(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)

Proof of Theorem mapdh8d
StepHypRef Expression
1 mapdh8a.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . 4 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . 4 = (-g𝑈)
5 mapdh8a.o . . . 4 0 = (0g𝑈)
6 mapdh8a.n . . . 4 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
10 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
11 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8b.eg . . . . . 6 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
17 mapdh8d.f . . . . . . 7 (𝜑𝐹𝐷)
18 mapdh8d.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19 mapdh8d.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh8d.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3938 . . . . . . 7 (𝜑𝑌𝑉)
221, 2, 14dvhlvec 41128 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
2319eldifad 3938 . . . . . . . . 9 (𝜑𝑋𝑉)
24 mapdh8d.w . . . . . . . . . 10 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2524eldifad 3938 . . . . . . . . 9 (𝜑𝑤𝑉)
26 mapdh8d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
273, 6, 22, 23, 21, 25, 26lspindpi 21093 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})))
2827simpld 494 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2910, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 21, 28mapdhcl 41746 . . . . . 6 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
3016, 29eqeltrrd 2835 . . . . 5 (𝜑𝐺𝐷)
3130adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐺𝐷)
3210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 20, 30, 28mapdheq 41747 . . . . . . 7 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3316, 32mpbid 232 . . . . . 6 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3433simpld 494 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
3534adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
36 mapdh8d.vw . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 16, 19, 20, 36, 24, 26mapdh8a 41794 . . . . 5 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3837adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3920adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4024adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
41 mapdh8d.wt . . . . 5 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
4241adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
43 mapdh8d.xt . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
4443adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
4536adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
46 simpr 484 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
4726adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 31, 35, 38, 39, 40, 42, 44, 45, 46, 47mapdh8b 41799 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
4917adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
5018adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
51 eqidd 2736 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
5219adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
53 mapdh8d.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
5453adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
55 mapdh8d.ut . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
5655adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 49, 50, 51, 52, 39, 44, 54, 40, 42, 56, 45, 46, 47mapdh8c 41800 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
5848, 57eqtr3d 2772 . 2 ((𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
5914adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6017adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹𝐷)
6118adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6216adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
6319adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
6420adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
6553adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
6643adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
67 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 59, 60, 61, 62, 63, 64, 65, 66, 67mapdh8a 41794 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
6958, 68pm2.61dan 812 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  ifcif 4500  {csn 4601  {cpr 4603  cotp 4609  cmpt 5201  cfv 6531  crio 7361  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  Basecbs 17228  0gc0g 17453  -gcsg 18918  LSpanclspn 20928  HLchlt 39368  LHypclh 40003  DVecHcdvh 41097  LCDualclcd 41605  mapdcmpd 41643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-rlreg 20654  df-domn 20655  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158  df-dic 41192  df-dih 41248  df-doch 41367  df-djh 41414  df-lcdual 41606  df-mapd 41644
This theorem is referenced by:  mapdh8e  41803
  Copyright terms: Public domain W3C validator