Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8d | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8d.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8b.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh8d.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8d.xt | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdh8d.wt | ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
mapdh8d.ut | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
mapdh8d.vw | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
mapdh8d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
Ref | Expression |
---|---|
mapdh8d | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . . . 4 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | mapdh8b.eg | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
17 | mapdh8d.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
18 | mapdh8d.mn | . . . . . . 7 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
19 | mapdh8d.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
20 | mapdh8d.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
21 | 20 | eldifad 3899 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
22 | 1, 2, 14 | dvhlvec 39123 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LVec) |
23 | 19 | eldifad 3899 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
24 | mapdh8d.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
25 | 24 | eldifad 3899 | . . . . . . . . 9 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
26 | mapdh8d.xn | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) | |
27 | 3, 6, 22, 23, 21, 25, 26 | lspindpi 20394 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))) |
28 | 27 | simpld 495 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
29 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 21, 28 | mapdhcl 39741 | . . . . . 6 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
30 | 16, 29 | eqeltrrd 2840 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
31 | 30 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐺 ∈ 𝐷) |
32 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 20, 30, 28 | mapdheq 39742 | . . . . . . 7 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
33 | 16, 32 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
34 | 33 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
35 | 34 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
36 | mapdh8d.vw | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) | |
37 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 16, 19, 20, 36, 24, 26 | mapdh8a 39789 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
38 | 37 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
39 | 20 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
40 | 24 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
41 | mapdh8d.wt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) | |
42 | 41 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
43 | mapdh8d.xt | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
44 | 43 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
45 | 36 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
46 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
47 | 26 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
48 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 31, 35, 38, 39, 40, 42, 44, 45, 46, 47 | mapdh8b 39794 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
49 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹 ∈ 𝐷) |
50 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
51 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) | |
52 | 19 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
53 | mapdh8d.yz | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
54 | 53 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
55 | mapdh8d.ut | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
56 | 55 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
57 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 49, 50, 51, 52, 39, 44, 54, 40, 42, 56, 45, 46, 47 | mapdh8c 39795 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
58 | 48, 57 | eqtr3d 2780 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
59 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
60 | 17 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝐹 ∈ 𝐷) |
61 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
62 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
63 | 19 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
64 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
65 | 53 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
66 | 43 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
67 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 59, 60, 61, 62, 63, 64, 65, 66, 67 | mapdh8a 39789 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
69 | 58, 68 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∖ cdif 3884 ifcif 4459 {csn 4561 {cpr 4563 〈cotp 4569 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 Basecbs 16912 0gc0g 17150 -gcsg 18579 LSpanclspn 20233 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 LCDualclcd 39600 mapdcmpd 39638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 df-lcdual 39601 df-mapd 39639 |
This theorem is referenced by: mapdh8e 39798 |
Copyright terms: Public domain | W3C validator |