Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7eN Structured version   Visualization version   GIF version

Theorem mapdh7eN 40557
Description: Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). (Note: 1 of 6 and 2 of 6 are hypotheses a and b.) (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h 𝐻 = (LHyp‘𝐾)
mapdh7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh7.v 𝑉 = (Base‘𝑈)
mapdh7.s = (-g𝑈)
mapdh7.o 0 = (0g𝑈)
mapdh7.n 𝑁 = (LSpan‘𝑈)
mapdh7.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh7.d 𝐷 = (Base‘𝐶)
mapdh7.r 𝑅 = (-g𝐶)
mapdh7.q 𝑄 = (0g𝐶)
mapdh7.j 𝐽 = (LSpan‘𝐶)
mapdh7.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh7.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh7.f (𝜑𝐹𝐷)
mapdh7.mn (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
mapdh7.x (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
mapdh7.y (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
mapdh7.z (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh7.ne (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
mapdh7.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
mapdh7b (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
Assertion
Ref Expression
mapdh7eN (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑢⟩) = 𝐹)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑢,,𝑣,𝑤,𝑥   𝑅,,𝑥   𝑈,
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑤,𝑣,𝑢)   𝑄(𝑤,𝑣,𝑢,)   𝑅(𝑤,𝑣,𝑢)   𝑈(𝑥,𝑤,𝑣,𝑢)   𝐸(𝑤,𝑣,𝑢)   𝐹(𝑤,𝑣,𝑢)   𝐻(𝑥,𝑤,𝑣,𝑢,)   𝐼(𝑥,𝑤,𝑣,𝑢,)   𝐽(𝑤,𝑣,𝑢)   𝐾(𝑥,𝑤,𝑣,𝑢,)   𝑀(𝑤,𝑣,𝑢)   (𝑤,𝑣,𝑢)   𝑁(𝑤,𝑣,𝑢)   𝑉(𝑥,𝑤,𝑣,𝑢,)   𝑊(𝑥,𝑤,𝑣,𝑢,)   0 (𝑤,𝑣,𝑢)

Proof of Theorem mapdh7eN
StepHypRef Expression
1 mapdh7b . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
2 mapdh7.q . . 3 𝑄 = (0g𝐶)
3 mapdh7.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
4 mapdh7.h . . 3 𝐻 = (LHyp‘𝐾)
5 mapdh7.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
6 mapdh7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 mapdh7.v . . 3 𝑉 = (Base‘𝑈)
8 mapdh7.s . . 3 = (-g𝑈)
9 mapdh7.o . . 3 0 = (0g𝑈)
10 mapdh7.n . . 3 𝑁 = (LSpan‘𝑈)
11 mapdh7.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
12 mapdh7.d . . 3 𝐷 = (Base‘𝐶)
13 mapdh7.r . . 3 𝑅 = (-g𝐶)
14 mapdh7.j . . 3 𝐽 = (LSpan‘𝐶)
15 mapdh7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh7.f . . 3 (𝜑𝐹𝐷)
17 mapdh7.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
18 mapdh7.x . . 3 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
19 mapdh7.z . . 3 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3959 . . . . 5 (𝜑𝑤𝑉)
214, 6, 15dvhlvec 39918 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
2218eldifad 3959 . . . . . . . 8 (𝜑𝑢𝑉)
23 mapdh7.y . . . . . . . . 9 (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3959 . . . . . . . 8 (𝜑𝑣𝑉)
25 mapdh7.wn . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
267, 10, 21, 20, 22, 24, 25lspindpi 20733 . . . . . . 7 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣})))
2726simpld 496 . . . . . 6 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}))
2827necomd 2997 . . . . 5 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑤}))
292, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 28mapdhcl 40536 . . . 4 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) ∈ 𝐷)
301, 29eqeltrrd 2835 . . 3 (𝜑𝐸𝐷)
312, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 30, 28mapdheq2 40538 . 2 (𝜑 → ((𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸 → (𝐼‘⟨𝑤, 𝐸, 𝑢⟩) = 𝐹))
321, 31mpd 15 1 (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑢⟩) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cdif 3944  ifcif 4527  {csn 4627  {cpr 4629  cotp 4635  cmpt 5230  cfv 6540  crio 7359  (class class class)co 7404  1st c1st 7968  2nd c2nd 7969  Basecbs 17140  0gc0g 17381  -gcsg 18817  LSpanclspn 20570  HLchlt 38158  LHypclh 38793  DVecHcdvh 39887  LCDualclcd 40395  mapdcmpd 40433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 37761
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-undef 8253  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-mre 17526  df-mrc 17527  df-acs 17529  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-oppg 19203  df-lsm 19497  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-dvr 20204  df-drng 20306  df-lmod 20461  df-lss 20531  df-lsp 20571  df-lvec 20702  df-lsatoms 37784  df-lshyp 37785  df-lcv 37827  df-lfl 37866  df-lkr 37894  df-ldual 37932  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-llines 38307  df-lplanes 38308  df-lvols 38309  df-lines 38310  df-psubsp 38312  df-pmap 38313  df-padd 38605  df-lhyp 38797  df-laut 38798  df-ldil 38913  df-ltrn 38914  df-trl 38968  df-tgrp 39552  df-tendo 39564  df-edring 39566  df-dveca 39812  df-disoa 39838  df-dvech 39888  df-dib 39948  df-dic 39982  df-dih 40038  df-doch 40157  df-djh 40204  df-lcdual 40396  df-mapd 40434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator