Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8d0N Structured version   Visualization version   GIF version

Theorem mapdh8d0N 40043
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 10-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8d.f (𝜑𝐹𝐷)
mapdh8d.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8b.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8d.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8d.xt (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8d.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh8d.wt (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
mapdh8d.ut (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8d.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
mapdh8d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
mapdh8d0.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
Assertion
Ref Expression
mapdh8d0N (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑤,,𝑥   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑇(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐺(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)

Proof of Theorem mapdh8d0N
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . 3 = (-g𝑈)
5 mapdh8a.o . . 3 0 = (0g𝑈)
6 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . 3 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . 3 𝑅 = (-g𝐶)
10 mapdh8a.q . . 3 𝑄 = (0g𝐶)
11 mapdh8a.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8b.eg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
16 mapdh8d.f . . . . 5 (𝜑𝐹𝐷)
17 mapdh8d.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdh8d.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh8d.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3909 . . . . 5 (𝜑𝑌𝑉)
211, 2, 14dvhlvec 39370 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2218eldifad 3909 . . . . . . 7 (𝜑𝑋𝑉)
23 mapdh8d.w . . . . . . . 8 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3909 . . . . . . 7 (𝜑𝑤𝑉)
25 mapdh8d.xn . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
263, 6, 21, 22, 20, 24, 25lspindpi 20492 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})))
2726simpld 495 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 20, 27mapdhcl 39988 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
2915, 28eqeltrrd 2838 . . 3 (𝜑𝐺𝐷)
3010, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 29, 27mapdheq 39989 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3115, 30mpbid 231 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3231simpld 495 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
33 mapdh8d.vw . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 15, 18, 19, 33, 23, 25mapdh8a 40036 . . 3 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
35 mapdh8d.wt . . 3 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
36 mapdh8d.xt . . 3 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
37 mapdh8d0.e . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 29, 32, 34, 19, 23, 35, 36, 33, 37, 25mapdh8b 40041 . 2 (𝜑 → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
39 eqidd 2737 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
40 mapdh8d.yz . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
41 mapdh8d.ut . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 39, 18, 19, 36, 40, 23, 35, 41, 33, 37, 25mapdh8c 40042 . 2 (𝜑 → (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
4338, 42eqtr3d 2778 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  cdif 3894  ifcif 4472  {csn 4572  {cpr 4574  cotp 4580  cmpt 5172  cfv 6473  crio 7285  (class class class)co 7329  1st c1st 7889  2nd c2nd 7890  Basecbs 17001  0gc0g 17239  -gcsg 18667  LSpanclspn 20331  HLchlt 37610  LHypclh 38245  DVecHcdvh 39339  LCDualclcd 39847  mapdcmpd 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-riotaBAD 37213
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-ot 4581  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-tpos 8104  df-undef 8151  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-sca 17067  df-vsca 17068  df-0g 17241  df-mre 17384  df-mrc 17385  df-acs 17387  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-p1 18233  df-lat 18239  df-clat 18306  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-grp 18668  df-minusg 18669  df-sbg 18670  df-subg 18840  df-cntz 19011  df-oppg 19038  df-lsm 19329  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-dvr 20012  df-drng 20087  df-lmod 20223  df-lss 20292  df-lsp 20332  df-lvec 20463  df-lsatoms 37236  df-lshyp 37237  df-lcv 37279  df-lfl 37318  df-lkr 37346  df-ldual 37384  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-llines 37759  df-lplanes 37760  df-lvols 37761  df-lines 37762  df-psubsp 37764  df-pmap 37765  df-padd 38057  df-lhyp 38249  df-laut 38250  df-ldil 38365  df-ltrn 38366  df-trl 38420  df-tgrp 39004  df-tendo 39016  df-edring 39018  df-dveca 39264  df-disoa 39290  df-dvech 39340  df-dib 39400  df-dic 39434  df-dih 39490  df-doch 39609  df-djh 39656  df-lcdual 39848  df-mapd 39886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator