| Step | Hyp | Ref
| Expression |
| 1 | | hdmap14lem8.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hdmap14lem8.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | hdmap14lem8.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
| 4 | | hdmap14lem8.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
| 5 | | hdmap14lem8.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | | hdmap14lem8.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 7 | 6 | eldifad 3963 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 8 | | hdmap14lem8.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 9 | 8 | eldifad 3963 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | dvh3dim 41448 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 11 | | hdmap14lem8.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑈) |
| 12 | | hdmap14lem8.r |
. . . . 5
⊢ 𝑅 = (Scalar‘𝑈) |
| 13 | | hdmap14lem8.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 14 | | hdmap14lem8.c |
. . . . 5
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 15 | | hdmap14lem8.e |
. . . . 5
⊢ ∙ = (
·𝑠 ‘𝐶) |
| 16 | | eqid 2737 |
. . . . 5
⊢
(LSpan‘𝐶) =
(LSpan‘𝐶) |
| 17 | | hdmap14lem8.p |
. . . . 5
⊢ 𝑃 = (Scalar‘𝐶) |
| 18 | | hdmap14lem8.a |
. . . . 5
⊢ 𝐴 = (Base‘𝑃) |
| 19 | | hdmap14lem8.s |
. . . . 5
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| 20 | 5 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 21 | | simp2 1138 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑧 ∈ 𝑉) |
| 22 | | hdmap14lem8.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 23 | 22 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹 ∈ 𝐵) |
| 24 | 1, 2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23 | hdmap14lem2a 41869 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) |
| 25 | | hdmap14lem8.q |
. . . . . . 7
⊢ + =
(+g‘𝑈) |
| 26 | | hdmap14lem8.o |
. . . . . . 7
⊢ 0 =
(0g‘𝑈) |
| 27 | | hdmap14lem8.d |
. . . . . . 7
⊢ ✚ =
(+g‘𝐶) |
| 28 | | simp11 1204 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝜑) |
| 29 | 28, 5 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 30 | | eqid 2737 |
. . . . . . . 8
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 31 | 1, 2, 5 | dvhlmod 41112 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 32 | 28, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑈 ∈ LMod) |
| 33 | 3, 30, 4, 31, 7, 9 | lspprcl 20976 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 34 | 28, 33 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 35 | | simp12 1205 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑧 ∈ 𝑉) |
| 36 | | simp13 1206 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 37 | 26, 30, 32, 34, 35, 36 | lssneln0 20951 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
| 38 | 28, 6 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 39 | 28, 22 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝐹 ∈ 𝐵) |
| 40 | | simp2 1138 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑔 ∈ 𝐴) |
| 41 | | hdmap14lem8.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| 42 | 28, 41 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝐺 ∈ 𝐴) |
| 43 | | simp3 1139 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) |
| 44 | | hdmap14lem8.xx |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| 45 | 28, 44 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| 46 | 1, 2, 5 | dvhlvec 41111 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 47 | 28, 46 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑈 ∈ LVec) |
| 48 | 28, 7 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑋 ∈ 𝑉) |
| 49 | 28, 9 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑌 ∈ 𝑉) |
| 50 | 3, 4, 47, 35, 48, 49, 36 | lspindpi 21134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑌}))) |
| 51 | 50 | simpld 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
| 52 | 1, 2, 3, 25, 11, 26, 4, 12, 13, 14, 27, 15, 17, 18, 19, 29, 37, 38, 39, 40, 42, 43, 45, 51 | hdmap14lem10 41879 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑔 = 𝐺) |
| 53 | 28, 8 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 54 | | hdmap14lem8.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| 55 | 28, 54 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝐼 ∈ 𝐴) |
| 56 | | hdmap14lem8.yy |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| 57 | 28, 56 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| 58 | 50 | simprd 495 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑌})) |
| 59 | 1, 2, 3, 25, 11, 26, 4, 12, 13, 14, 27, 15, 17, 18, 19, 29, 37, 53, 39, 40, 55, 43, 57, 58 | hdmap14lem10 41879 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝑔 = 𝐼) |
| 60 | 52, 59 | eqtr3d 2779 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧))) → 𝐺 = 𝐼) |
| 61 | 60 | rexlimdv3a 3159 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑧)) = (𝑔 ∙ (𝑆‘𝑧)) → 𝐺 = 𝐼)) |
| 62 | 24, 61 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐺 = 𝐼) |
| 63 | 62 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → 𝐺 = 𝐼)) |
| 64 | 10, 63 | mpd 15 |
1
⊢ (𝜑 → 𝐺 = 𝐼) |