| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elspansncl | Structured version Visualization version GIF version | ||
| Description: A member of a span of a singleton is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elspansncl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ (span‘{𝐴})) → 𝐵 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4761 | . 2 ⊢ (𝐴 ∈ ℋ → {𝐴} ⊆ ℋ) | |
| 2 | elspancl 31328 | . 2 ⊢ (({𝐴} ⊆ ℋ ∧ 𝐵 ∈ (span‘{𝐴})) → 𝐵 ∈ ℋ) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ (span‘{𝐴})) → 𝐵 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3899 {csn 4577 ‘cfv 6489 ℋchba 30910 spancspn 30923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 ax-hilex 30990 ax-hfvadd 30991 ax-hvcom 30992 ax-hvass 30993 ax-hv0cl 30994 ax-hvaddid 30995 ax-hfvmul 30996 ax-hvmulid 30997 ax-hvmulass 30998 ax-hvdistr1 30999 ax-hvdistr2 31000 ax-hvmul0 31001 ax-hfi 31070 ax-his1 31073 ax-his2 31074 ax-his3 31075 ax-his4 31076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-icc 13262 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-topgen 17357 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-top 22819 df-topon 22836 df-bases 22871 df-lm 23154 df-haus 23240 df-grpo 30484 df-gid 30485 df-ginv 30486 df-gdiv 30487 df-ablo 30536 df-vc 30550 df-nv 30583 df-va 30586 df-ba 30587 df-sm 30588 df-0v 30589 df-vs 30590 df-nmcv 30591 df-ims 30592 df-hnorm 30959 df-hvsub 30962 df-hlim 30963 df-sh 31198 df-ch 31212 df-ch0 31244 df-span 31300 |
| This theorem is referenced by: sumdmdlem 32409 |
| Copyright terms: Public domain | W3C validator |