Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlscl Structured version   Visualization version   GIF version

Theorem evlscl 42539
Description: A polynomial over the ring 𝑅 evaluates to an element in 𝑅. (Contributed by SN, 12-Mar-2025.)
Hypotheses
Ref Expression
evlscl.q 𝑄 = ((𝐼 evalSub 𝑅)‘𝑆)
evlscl.p 𝑃 = (𝐼 mPoly 𝑈)
evlscl.u 𝑈 = (𝑅s 𝑆)
evlscl.b 𝐵 = (Base‘𝑃)
evlscl.k 𝐾 = (Base‘𝑅)
evlscl.i (𝜑𝐼𝑉)
evlscl.r (𝜑𝑅 ∈ CRing)
evlscl.s (𝜑𝑆 ∈ (SubRing‘𝑅))
evlscl.f (𝜑𝐹𝐵)
evlscl.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlscl (𝜑 → ((𝑄𝐹)‘𝐴) ∈ 𝐾)

Proof of Theorem evlscl
StepHypRef Expression
1 eqid 2730 . . 3 (𝑅s (𝐾m 𝐼)) = (𝑅s (𝐾m 𝐼))
2 evlscl.k . . 3 𝐾 = (Base‘𝑅)
3 eqid 2730 . . 3 (Base‘(𝑅s (𝐾m 𝐼))) = (Base‘(𝑅s (𝐾m 𝐼)))
4 evlscl.r . . 3 (𝜑𝑅 ∈ CRing)
5 ovexd 7424 . . 3 (𝜑 → (𝐾m 𝐼) ∈ V)
6 evlscl.i . . . . . 6 (𝜑𝐼𝑉)
7 evlscl.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘𝑅))
8 evlscl.q . . . . . . 7 𝑄 = ((𝐼 evalSub 𝑅)‘𝑆)
9 evlscl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑈)
10 evlscl.u . . . . . . 7 𝑈 = (𝑅s 𝑆)
118, 9, 10, 1, 2evlsrhm 22001 . . . . . 6 ((𝐼𝑉𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑄 ∈ (𝑃 RingHom (𝑅s (𝐾m 𝐼))))
126, 4, 7, 11syl3anc 1373 . . . . 5 (𝜑𝑄 ∈ (𝑃 RingHom (𝑅s (𝐾m 𝐼))))
13 evlscl.b . . . . . 6 𝐵 = (Base‘𝑃)
1413, 3rhmf 20400 . . . . 5 (𝑄 ∈ (𝑃 RingHom (𝑅s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑅s (𝐾m 𝐼))))
1512, 14syl 17 . . . 4 (𝜑𝑄:𝐵⟶(Base‘(𝑅s (𝐾m 𝐼))))
16 evlscl.f . . . 4 (𝜑𝐹𝐵)
1715, 16ffvelcdmd 7059 . . 3 (𝜑 → (𝑄𝐹) ∈ (Base‘(𝑅s (𝐾m 𝐼))))
181, 2, 3, 4, 5, 17pwselbas 17458 . 2 (𝜑 → (𝑄𝐹):(𝐾m 𝐼)⟶𝐾)
19 evlscl.a . 2 (𝜑𝐴 ∈ (𝐾m 𝐼))
2018, 19ffvelcdmd 7059 1 (𝜑 → ((𝑄𝐹)‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wf 6509  cfv 6513  (class class class)co 7389  m cmap 8801  Basecbs 17185  s cress 17206  s cpws 17415  CRingccrg 20149   RingHom crh 20384  SubRingcsubrg 20484   mPoly cmpl 21821   evalSub ces 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-evls 21987
This theorem is referenced by:  evlsmaprhm  42551
  Copyright terms: Public domain W3C validator