![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlsrhm | Structured version Visualization version GIF version |
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.) |
Ref | Expression |
---|---|
evlsrhm.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsrhm.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlsrhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsrhm.t | ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) |
evlsrhm.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
evlsrhm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsrhm.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | evlsrhm.w | . . 3 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
3 | eqid 2825 | . . 3 ⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) | |
4 | evlsrhm.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
5 | evlsrhm.t | . . 3 ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) | |
6 | evlsrhm.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
7 | eqid 2825 | . . 3 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
8 | eqid 2825 | . . 3 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑𝑚 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑𝑚 𝐼) × {𝑥})) | |
9 | eqid 2825 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑦‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑦‘𝑥))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlsval2 19880 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ (algSc‘𝑊)) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑𝑚 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑦‘𝑥)))))) |
11 | 10 | simpld 490 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 {csn 4397 ↦ cmpt 4952 × cxp 5340 ∘ ccom 5346 ‘cfv 6123 (class class class)co 6905 ↑𝑚 cmap 8122 Basecbs 16222 ↾s cress 16223 ↑s cpws 16460 CRingccrg 18902 RingHom crh 19068 SubRingcsubrg 19132 algSccascl 19672 mVar cmvr 19713 mPoly cmpl 19714 evalSub ces 19864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-ofr 7158 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-z 11705 df-dec 11822 df-uz 11969 df-fz 12620 df-fzo 12761 df-seq 13096 df-hash 13411 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-hom 16329 df-cco 16330 df-0g 16455 df-gsum 16456 df-prds 16461 df-pws 16463 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mulg 17895 df-subg 17942 df-ghm 18009 df-cntz 18100 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-srg 18860 df-ring 18903 df-cring 18904 df-rnghom 19071 df-subrg 19134 df-lmod 19221 df-lss 19289 df-lsp 19331 df-assa 19673 df-asp 19674 df-ascl 19675 df-psr 19717 df-mvr 19718 df-mpl 19719 df-evls 19866 |
This theorem is referenced by: evlrhm 19885 mpfconst 19890 mpfproj 19891 mpfsubrg 19892 mpfind 19896 evls1val 20045 evls1rhm 20047 evls1sca 20048 |
Copyright terms: Public domain | W3C validator |