| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lgricngricex | Structured version Visualization version GIF version | ||
| Description: There are two different locally isomorphic graphs which are not isomorphic. (Contributed by AV, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| lgricngricex | ⊢ ∃𝑔∃ℎ(𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpg5grlic 48256 | . 2 ⊢ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) | |
| 2 | gpg5ngric 48290 | . 2 ⊢ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2) | |
| 3 | ovex 7388 | . . 3 ⊢ (5 gPetersenGr 1) ∈ V | |
| 4 | ovex 7388 | . . 3 ⊢ (5 gPetersenGr 2) ∈ V | |
| 5 | breq12 5100 | . . . 4 ⊢ ((𝑔 = (5 gPetersenGr 1) ∧ ℎ = (5 gPetersenGr 2)) → (𝑔 ≃𝑙𝑔𝑟 ℎ ↔ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2))) | |
| 6 | breq12 5100 | . . . . 5 ⊢ ((𝑔 = (5 gPetersenGr 1) ∧ ℎ = (5 gPetersenGr 2)) → (𝑔 ≃𝑔𝑟 ℎ ↔ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) | |
| 7 | 6 | notbid 318 | . . . 4 ⊢ ((𝑔 = (5 gPetersenGr 1) ∧ ℎ = (5 gPetersenGr 2)) → (¬ 𝑔 ≃𝑔𝑟 ℎ ↔ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2))) |
| 8 | 5, 7 | anbi12d 632 | . . 3 ⊢ ((𝑔 = (5 gPetersenGr 1) ∧ ℎ = (5 gPetersenGr 2)) → ((𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ) ↔ ((5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) ∧ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2)))) |
| 9 | 3, 4, 8 | spc2ev 3558 | . 2 ⊢ (((5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) ∧ ¬ (5 gPetersenGr 1) ≃𝑔𝑟 (5 gPetersenGr 2)) → ∃𝑔∃ℎ(𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ)) |
| 10 | 1, 2, 9 | mp2an 692 | 1 ⊢ ∃𝑔∃ℎ(𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∃wex 1780 class class class wbr 5095 (class class class)co 7355 1c1 11018 2c2 12191 5c5 12194 ≃𝑔𝑟 cgric 48038 ≃𝑙𝑔𝑟 cgrlic 48139 gPetersenGr cgpg 48202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-ceil 13704 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-s4 14764 df-s5 14765 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-edgf 28988 df-vtx 28997 df-iedg 28998 df-edg 29047 df-uhgr 29057 df-ushgr 29058 df-upgr 29081 df-umgr 29082 df-uspgr 29149 df-usgr 29150 df-subgr 29267 df-nbgr 29332 df-wlks 29599 df-trls 29690 df-pths 29713 df-cycls 29786 df-clnbgr 47981 df-isubgr 48023 df-grim 48040 df-gric 48043 df-stgr 48114 df-grlim 48140 df-grlic 48143 df-gpg 48203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |