Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhssims2 | Structured version Visualization version GIF version |
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
hhssims2.2 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
hhssims2 | ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims2.3 | . 2 ⊢ 𝐷 = (IndMet‘𝑊) | |
2 | hhssims2.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
3 | hhssims2.2 | . . 3 ⊢ 𝐻 ∈ Sℋ | |
4 | eqid 2739 | . . 3 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | |
5 | 2, 3, 4 | hhssims 29512 | . 2 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = (IndMet‘𝑊) |
6 | 1, 5 | eqtr4i 2770 | 1 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 〈cop 4564 × cxp 5577 ↾ cres 5581 ∘ ccom 5583 ‘cfv 6415 ℂcc 10775 IndMetcims 28829 +ℎ cva 29158 ·ℎ csm 29159 normℎcno 29161 −ℎ cmv 29163 Sℋ csh 29166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 ax-addf 10856 ax-mulf 10857 ax-hilex 29237 ax-hfvadd 29238 ax-hvcom 29239 ax-hvass 29240 ax-hv0cl 29241 ax-hvaddid 29242 ax-hfvmul 29243 ax-hvmulid 29244 ax-hvmulass 29245 ax-hvdistr1 29246 ax-hvdistr2 29247 ax-hvmul0 29248 ax-hfi 29317 ax-his1 29320 ax-his2 29321 ax-his3 29322 ax-his4 29323 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-map 8552 df-pm 8553 df-en 8669 df-dom 8670 df-sdom 8671 df-sup 9106 df-inf 9107 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-n0 12139 df-z 12225 df-uz 12487 df-q 12593 df-rp 12635 df-xneg 12752 df-xadd 12753 df-xmul 12754 df-icc 12990 df-seq 13625 df-exp 13686 df-cj 14713 df-re 14714 df-im 14715 df-sqrt 14849 df-abs 14850 df-topgen 17046 df-psmet 20477 df-xmet 20478 df-met 20479 df-bl 20480 df-mopn 20481 df-top 21926 df-topon 21943 df-bases 21979 df-lm 22263 df-haus 22349 df-grpo 28731 df-gid 28732 df-ginv 28733 df-gdiv 28734 df-ablo 28783 df-vc 28797 df-nv 28830 df-va 28833 df-ba 28834 df-sm 28835 df-0v 28836 df-vs 28837 df-nmcv 28838 df-ims 28839 df-ssp 28960 df-hnorm 29206 df-hba 29207 df-hvsub 29209 df-hlim 29210 df-sh 29445 df-ch 29459 df-ch0 29491 |
This theorem is referenced by: hhsscms 29516 |
Copyright terms: Public domain | W3C validator |