![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat0dim0 | Structured version Visualization version GIF version |
Description: The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
mat0dim.a | ⊢ 𝐴 = (∅ Mat 𝑅) |
Ref | Expression |
---|---|
mat0dim0 | ⊢ (𝑅 ∈ Ring → (0g‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0fin 9175 | . . . 4 ⊢ ∅ ∈ Fin | |
2 | mat0dim.a | . . . . 5 ⊢ 𝐴 = (∅ Mat 𝑅) | |
3 | 2 | matring 22166 | . . . 4 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
4 | 1, 3 | mpan 687 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐴 ∈ Ring) |
5 | ringgrp 20133 | . . 3 ⊢ (𝐴 ∈ Ring → 𝐴 ∈ Grp) | |
6 | eqid 2731 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
7 | eqid 2731 | . . . 4 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
8 | 6, 7 | grpidcl 18887 | . . 3 ⊢ (𝐴 ∈ Grp → (0g‘𝐴) ∈ (Base‘𝐴)) |
9 | 4, 5, 8 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘𝐴) ∈ (Base‘𝐴)) |
10 | 2 | fveq2i 6894 | . . . . 5 ⊢ (Base‘𝐴) = (Base‘(∅ Mat 𝑅)) |
11 | mat0dimbas0 22189 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
12 | 10, 11 | eqtrid 2783 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝐴) = {∅}) |
13 | 12 | eleq2d 2818 | . . 3 ⊢ (𝑅 ∈ Ring → ((0g‘𝐴) ∈ (Base‘𝐴) ↔ (0g‘𝐴) ∈ {∅})) |
14 | elsni 4645 | . . 3 ⊢ ((0g‘𝐴) ∈ {∅} → (0g‘𝐴) = ∅) | |
15 | 13, 14 | syl6bi 253 | . 2 ⊢ (𝑅 ∈ Ring → ((0g‘𝐴) ∈ (Base‘𝐴) → (0g‘𝐴) = ∅)) |
16 | 9, 15 | mpd 15 | 1 ⊢ (𝑅 ∈ Ring → (0g‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∅c0 4322 {csn 4628 ‘cfv 6543 (class class class)co 7412 Fincfn 8943 Basecbs 17149 0gc0g 17390 Grpcgrp 18856 Ringcrg 20128 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrg 20460 df-lmod 20617 df-lss 20688 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-mamu 22107 df-mat 22129 |
This theorem is referenced by: chpmat0d 22557 |
Copyright terms: Public domain | W3C validator |