MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2b Structured version   Visualization version   GIF version

Theorem nmoleub2b 23701
Description: The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n 𝑁 = (𝑆 normOp 𝑇)
nmoleub2.v 𝑉 = (Base‘𝑆)
nmoleub2.l 𝐿 = (norm‘𝑆)
nmoleub2.m 𝑀 = (norm‘𝑇)
nmoleub2.g 𝐺 = (Scalar‘𝑆)
nmoleub2.w 𝐾 = (Base‘𝐺)
nmoleub2.s (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
nmoleub2.t (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
nmoleub2.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
nmoleub2.a (𝜑𝐴 ∈ ℝ*)
nmoleub2.r (𝜑𝑅 ∈ ℝ+)
nmoleub2a.5 (𝜑 → ℚ ⊆ 𝐾)
Assertion
Ref Expression
nmoleub2b (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑁   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑅
Allowed substitution hints:   𝑇(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem nmoleub2b
StepHypRef Expression
1 nmoleub2.n . 2 𝑁 = (𝑆 normOp 𝑇)
2 nmoleub2.v . 2 𝑉 = (Base‘𝑆)
3 nmoleub2.l . 2 𝐿 = (norm‘𝑆)
4 nmoleub2.m . 2 𝑀 = (norm‘𝑇)
5 nmoleub2.g . 2 𝐺 = (Scalar‘𝑆)
6 nmoleub2.w . 2 𝐾 = (Base‘𝐺)
7 nmoleub2.s . 2 (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))
8 nmoleub2.t . 2 (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))
9 nmoleub2.f . 2 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
10 nmoleub2.a . 2 (𝜑𝐴 ∈ ℝ*)
11 nmoleub2.r . 2 (𝜑𝑅 ∈ ℝ+)
12 nmoleub2a.5 . 2 (𝜑 → ℚ ⊆ 𝐾)
13 ltle 10706 . 2 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥) ≤ 𝑅))
14 idd 24 . 2 (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥) < 𝑅))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14nmoleub2lem2 23699 1 (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  cin 3909  wss 3910   class class class wbr 5039  cfv 6328  (class class class)co 7130  cr 10513  *cxr 10651   < clt 10652  cle 10653   / cdiv 11274  cq 12326  +crp 12367  Basecbs 16461  Scalarcsca 16546   LMHom clmhm 19766  normcnm 23161  NrmModcnlm 23165   normOp cnmo 23289  ℂModcclm 23645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ico 12722  df-fz 12876  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-0g 16693  df-topgen 16695  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-subg 18254  df-ghm 18334  df-cmn 18886  df-mgp 19218  df-ring 19277  df-cring 19278  df-subrg 19508  df-lmod 19611  df-lmhm 19769  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-xms 22905  df-ms 22906  df-nm 23167  df-ngp 23168  df-nlm 23171  df-nmo 23292  df-nghm 23293  df-clm 23646
This theorem is referenced by:  nmhmcn  23703
  Copyright terms: Public domain W3C validator