![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmoleub2b | Structured version Visualization version GIF version |
Description: The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
Ref | Expression |
---|---|
nmoleub2.n | β’ π = (π normOp π) |
nmoleub2.v | β’ π = (Baseβπ) |
nmoleub2.l | β’ πΏ = (normβπ) |
nmoleub2.m | β’ π = (normβπ) |
nmoleub2.g | β’ πΊ = (Scalarβπ) |
nmoleub2.w | β’ πΎ = (BaseβπΊ) |
nmoleub2.s | β’ (π β π β (NrmMod β© βMod)) |
nmoleub2.t | β’ (π β π β (NrmMod β© βMod)) |
nmoleub2.f | β’ (π β πΉ β (π LMHom π)) |
nmoleub2.a | β’ (π β π΄ β β*) |
nmoleub2.r | β’ (π β π β β+) |
nmoleub2a.5 | β’ (π β β β πΎ) |
Ref | Expression |
---|---|
nmoleub2b | β’ (π β ((πβπΉ) β€ π΄ β βπ₯ β π ((πΏβπ₯) < π β ((πβ(πΉβπ₯)) / π ) β€ π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoleub2.n | . 2 β’ π = (π normOp π) | |
2 | nmoleub2.v | . 2 β’ π = (Baseβπ) | |
3 | nmoleub2.l | . 2 β’ πΏ = (normβπ) | |
4 | nmoleub2.m | . 2 β’ π = (normβπ) | |
5 | nmoleub2.g | . 2 β’ πΊ = (Scalarβπ) | |
6 | nmoleub2.w | . 2 β’ πΎ = (BaseβπΊ) | |
7 | nmoleub2.s | . 2 β’ (π β π β (NrmMod β© βMod)) | |
8 | nmoleub2.t | . 2 β’ (π β π β (NrmMod β© βMod)) | |
9 | nmoleub2.f | . 2 β’ (π β πΉ β (π LMHom π)) | |
10 | nmoleub2.a | . 2 β’ (π β π΄ β β*) | |
11 | nmoleub2.r | . 2 β’ (π β π β β+) | |
12 | nmoleub2a.5 | . 2 β’ (π β β β πΎ) | |
13 | ltle 11342 | . 2 β’ (((πΏβπ₯) β β β§ π β β) β ((πΏβπ₯) < π β (πΏβπ₯) β€ π )) | |
14 | idd 24 | . 2 β’ (((πΏβπ₯) β β β§ π β β) β ((πΏβπ₯) < π β (πΏβπ₯) < π )) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | nmoleub2lem2 25071 | 1 β’ (π β ((πβπΉ) β€ π΄ β βπ₯ β π ((πΏβπ₯) < π β ((πβ(πΉβπ₯)) / π ) β€ π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3058 β© cin 3948 β wss 3949 class class class wbr 5152 βcfv 6553 (class class class)co 7426 βcr 11147 β*cxr 11287 < clt 11288 β€ cle 11289 / cdiv 11911 βcq 12972 β+crp 13016 Basecbs 17189 Scalarcsca 17245 LMHom clmhm 20918 normcnm 24513 NrmModcnlm 24517 normOp cnmo 24650 βModcclm 25017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-q 12973 df-rp 13017 df-xneg 13134 df-xadd 13135 df-xmul 13136 df-ico 13372 df-fz 13527 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-0g 17432 df-topgen 17434 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-grp 18907 df-subg 19092 df-ghm 19182 df-cmn 19751 df-mgp 20089 df-ring 20189 df-cring 20190 df-subrg 20522 df-lmod 20759 df-lmhm 20921 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22824 df-topon 22841 df-topsp 22863 df-bases 22877 df-xms 24254 df-ms 24255 df-nm 24519 df-ngp 24520 df-nlm 24523 df-nmo 24653 df-nghm 24654 df-clm 25018 |
This theorem is referenced by: nmhmcn 25075 |
Copyright terms: Public domain | W3C validator |