Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1sclf1 | Structured version Visualization version GIF version |
Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1sclid.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1sclf1.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1sclf1 | ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1scl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑃) | |
3 | ply1sclid.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | ply1sclf1.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | ply1sclf 21454 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) |
6 | fveq2 6771 | . . . . 5 ⊢ ((𝐴‘𝑥) = (𝐴‘𝑦) → (coe1‘(𝐴‘𝑥)) = (coe1‘(𝐴‘𝑦))) | |
7 | 6 | fveq1d 6773 | . . . 4 ⊢ ((𝐴‘𝑥) = (𝐴‘𝑦) → ((coe1‘(𝐴‘𝑥))‘0) = ((coe1‘(𝐴‘𝑦))‘0)) |
8 | 1, 2, 3 | ply1sclid 21457 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾) → 𝑥 = ((coe1‘(𝐴‘𝑥))‘0)) |
9 | 8 | adantrr 714 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑥 = ((coe1‘(𝐴‘𝑥))‘0)) |
10 | 1, 2, 3 | ply1sclid 21457 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) → 𝑦 = ((coe1‘(𝐴‘𝑦))‘0)) |
11 | 10 | adantrl 713 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 = ((coe1‘(𝐴‘𝑦))‘0)) |
12 | 9, 11 | eqeq12d 2756 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥 = 𝑦 ↔ ((coe1‘(𝐴‘𝑥))‘0) = ((coe1‘(𝐴‘𝑦))‘0))) |
13 | 7, 12 | syl5ibr 245 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦)) |
14 | 13 | ralrimivva 3117 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦)) |
15 | dff13 7125 | . 2 ⊢ (𝐴:𝐾–1-1→𝐵 ↔ (𝐴:𝐾⟶𝐵 ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦))) | |
16 | 5, 14, 15 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⟶wf 6428 –1-1→wf1 6429 ‘cfv 6432 0cc0 10872 Basecbs 16910 Ringcrg 19781 algSccascl 21057 Poly1cpl1 21346 coe1cco1 21347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-ofr 7528 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-fzo 13382 df-seq 13720 df-hash 14043 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-tset 16979 df-ple 16980 df-0g 17150 df-gsum 17151 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-ghm 18830 df-cntz 18921 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-subrg 20020 df-lmod 20123 df-lss 20192 df-ascl 21060 df-psr 21110 df-mvr 21111 df-mpl 21112 df-opsr 21114 df-psr1 21349 df-vr1 21350 df-ply1 21351 df-coe1 21352 |
This theorem is referenced by: ply1scln0 21460 mat2pmatf1 21876 facth1 25327 |
Copyright terms: Public domain | W3C validator |