MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1sclf1 Structured version   Visualization version   GIF version

Theorem ply1sclf1 22240
Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1scl.p 𝑃 = (Poly1𝑅)
ply1scl.a 𝐴 = (algSc‘𝑃)
ply1sclid.k 𝐾 = (Base‘𝑅)
ply1sclf1.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
ply1sclf1 (𝑅 ∈ Ring → 𝐴:𝐾1-1𝐵)

Proof of Theorem ply1sclf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1scl.p . . 3 𝑃 = (Poly1𝑅)
2 ply1scl.a . . 3 𝐴 = (algSc‘𝑃)
3 ply1sclid.k . . 3 𝐾 = (Base‘𝑅)
4 ply1sclf1.b . . 3 𝐵 = (Base‘𝑃)
51, 2, 3, 4ply1sclf 22236 . 2 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
6 fveq2 6886 . . . . 5 ((𝐴𝑥) = (𝐴𝑦) → (coe1‘(𝐴𝑥)) = (coe1‘(𝐴𝑦)))
76fveq1d 6888 . . . 4 ((𝐴𝑥) = (𝐴𝑦) → ((coe1‘(𝐴𝑥))‘0) = ((coe1‘(𝐴𝑦))‘0))
81, 2, 3ply1sclid 22239 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾) → 𝑥 = ((coe1‘(𝐴𝑥))‘0))
98adantrr 717 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → 𝑥 = ((coe1‘(𝐴𝑥))‘0))
101, 2, 3ply1sclid 22239 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → 𝑦 = ((coe1‘(𝐴𝑦))‘0))
1110adantrl 716 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → 𝑦 = ((coe1‘(𝐴𝑦))‘0))
129, 11eqeq12d 2750 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 = 𝑦 ↔ ((coe1‘(𝐴𝑥))‘0) = ((coe1‘(𝐴𝑦))‘0)))
137, 12imbitrrid 246 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦))
1413ralrimivva 3189 . 2 (𝑅 ∈ Ring → ∀𝑥𝐾𝑦𝐾 ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦))
15 dff13 7257 . 2 (𝐴:𝐾1-1𝐵 ↔ (𝐴:𝐾𝐵 ∧ ∀𝑥𝐾𝑦𝐾 ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦)))
165, 14, 15sylanbrc 583 1 (𝑅 ∈ Ring → 𝐴:𝐾1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wf 6537  1-1wf1 6538  cfv 6541  0cc0 11137  Basecbs 17229  Ringcrg 20198  algSccascl 21826  Poly1cpl1 22126  coe1cco1 22127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20514  df-subrg 20538  df-lmod 20828  df-lss 20898  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-psr1 22129  df-vr1 22130  df-ply1 22131  df-coe1 22132
This theorem is referenced by:  ply1scln0  22243  mat2pmatf1  22683  facth1  26142
  Copyright terms: Public domain W3C validator