Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1sclf1 Structured version   Visualization version   GIF version

Theorem ply1sclf1 20432
 Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1scl.p 𝑃 = (Poly1𝑅)
ply1scl.a 𝐴 = (algSc‘𝑃)
ply1sclid.k 𝐾 = (Base‘𝑅)
ply1sclf1.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
ply1sclf1 (𝑅 ∈ Ring → 𝐴:𝐾1-1𝐵)

Proof of Theorem ply1sclf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1scl.p . . 3 𝑃 = (Poly1𝑅)
2 ply1scl.a . . 3 𝐴 = (algSc‘𝑃)
3 ply1sclid.k . . 3 𝐾 = (Base‘𝑅)
4 ply1sclf1.b . . 3 𝐵 = (Base‘𝑃)
51, 2, 3, 4ply1sclf 20428 . 2 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
6 fveq2 6643 . . . . 5 ((𝐴𝑥) = (𝐴𝑦) → (coe1‘(𝐴𝑥)) = (coe1‘(𝐴𝑦)))
76fveq1d 6645 . . . 4 ((𝐴𝑥) = (𝐴𝑦) → ((coe1‘(𝐴𝑥))‘0) = ((coe1‘(𝐴𝑦))‘0))
81, 2, 3ply1sclid 20431 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾) → 𝑥 = ((coe1‘(𝐴𝑥))‘0))
98adantrr 716 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → 𝑥 = ((coe1‘(𝐴𝑥))‘0))
101, 2, 3ply1sclid 20431 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → 𝑦 = ((coe1‘(𝐴𝑦))‘0))
1110adantrl 715 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → 𝑦 = ((coe1‘(𝐴𝑦))‘0))
129, 11eqeq12d 2837 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 = 𝑦 ↔ ((coe1‘(𝐴𝑥))‘0) = ((coe1‘(𝐴𝑦))‘0)))
137, 12syl5ibr 249 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦))
1413ralrimivva 3179 . 2 (𝑅 ∈ Ring → ∀𝑥𝐾𝑦𝐾 ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦))
15 dff13 6987 . 2 (𝐴:𝐾1-1𝐵 ↔ (𝐴:𝐾𝐵 ∧ ∀𝑥𝐾𝑦𝐾 ((𝐴𝑥) = (𝐴𝑦) → 𝑥 = 𝑦)))
165, 14, 15sylanbrc 586 1 (𝑅 ∈ Ring → 𝐴:𝐾1-1𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126  ⟶wf 6324  –1-1→wf1 6325  ‘cfv 6328  0cc0 10514  Basecbs 16461  Ringcrg 19275  algSccascl 20059  Poly1cpl1 20320  coe1cco1 20321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-fz 12876  df-fzo 13017  df-seq 13353  df-hash 13675  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-tset 16562  df-ple 16563  df-0g 16693  df-gsum 16694  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-ghm 18334  df-cntz 18425  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-subrg 19508  df-lmod 19611  df-lss 19679  df-ascl 20062  df-psr 20111  df-mvr 20112  df-mpl 20113  df-opsr 20115  df-psr1 20323  df-vr1 20324  df-ply1 20325  df-coe1 20326 This theorem is referenced by:  ply1scln0  20434  mat2pmatf1  21312  facth1  24743
 Copyright terms: Public domain W3C validator