![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1sclf1 | Structured version Visualization version GIF version |
Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1sclid.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1sclf1.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1sclf1 | ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1scl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑃) | |
3 | ply1sclid.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | ply1sclf1.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | ply1sclf 22209 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) |
6 | fveq2 6900 | . . . . 5 ⊢ ((𝐴‘𝑥) = (𝐴‘𝑦) → (coe1‘(𝐴‘𝑥)) = (coe1‘(𝐴‘𝑦))) | |
7 | 6 | fveq1d 6902 | . . . 4 ⊢ ((𝐴‘𝑥) = (𝐴‘𝑦) → ((coe1‘(𝐴‘𝑥))‘0) = ((coe1‘(𝐴‘𝑦))‘0)) |
8 | 1, 2, 3 | ply1sclid 22212 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾) → 𝑥 = ((coe1‘(𝐴‘𝑥))‘0)) |
9 | 8 | adantrr 715 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑥 = ((coe1‘(𝐴‘𝑥))‘0)) |
10 | 1, 2, 3 | ply1sclid 22212 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) → 𝑦 = ((coe1‘(𝐴‘𝑦))‘0)) |
11 | 10 | adantrl 714 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 = ((coe1‘(𝐴‘𝑦))‘0)) |
12 | 9, 11 | eqeq12d 2743 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥 = 𝑦 ↔ ((coe1‘(𝐴‘𝑥))‘0) = ((coe1‘(𝐴‘𝑦))‘0))) |
13 | 7, 12 | imbitrrid 245 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦)) |
14 | 13 | ralrimivva 3196 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦)) |
15 | dff13 7269 | . 2 ⊢ (𝐴:𝐾–1-1→𝐵 ↔ (𝐴:𝐾⟶𝐵 ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 ((𝐴‘𝑥) = (𝐴‘𝑦) → 𝑥 = 𝑦))) | |
16 | 5, 14, 15 | sylanbrc 581 | 1 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ⟶wf 6547 –1-1→wf1 6548 ‘cfv 6551 0cc0 11144 Basecbs 17185 Ringcrg 20178 algSccascl 21791 Poly1cpl1 22101 coe1cco1 22102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-ofr 7690 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-sup 9471 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-fzo 13666 df-seq 14005 df-hash 14328 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-hom 17262 df-cco 17263 df-0g 17428 df-gsum 17429 df-prds 17434 df-pws 17436 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18745 df-submnd 18746 df-grp 18898 df-minusg 18899 df-sbg 18900 df-mulg 19029 df-subg 19083 df-ghm 19173 df-cntz 19273 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-subrng 20488 df-subrg 20513 df-lmod 20750 df-lss 20821 df-ascl 21794 df-psr 21847 df-mvr 21848 df-mpl 21849 df-opsr 21851 df-psr1 22104 df-vr1 22105 df-ply1 22106 df-coe1 22107 |
This theorem is referenced by: ply1scln0 22216 mat2pmatf1 22649 facth1 26119 |
Copyright terms: Public domain | W3C validator |