Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1scleq | Structured version Visualization version GIF version |
Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
ply1scleq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scleq.b | ⊢ 𝐵 = (Base‘𝑅) |
ply1scleq.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1scleq.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1scleq.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
ply1scleq.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
ply1scleq | ⊢ (𝜑 → ((𝐴‘𝐸) = (𝐴‘𝐹) ↔ 𝐸 = 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑑 = 0 → ((coe1‘(𝐴‘𝐸))‘𝑑) = ((coe1‘(𝐴‘𝐸))‘0)) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝑑 = 0 → ((coe1‘(𝐴‘𝐹))‘𝑑) = ((coe1‘(𝐴‘𝐹))‘0)) | |
3 | 1, 2 | eqeq12d 2754 | . . . 4 ⊢ (𝑑 = 0 → (((coe1‘(𝐴‘𝐸))‘𝑑) = ((coe1‘(𝐴‘𝐹))‘𝑑) ↔ ((coe1‘(𝐴‘𝐸))‘0) = ((coe1‘(𝐴‘𝐹))‘0))) |
4 | ply1scleq.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | ply1scleq.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
6 | ply1scleq.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | ply1scleq.a | . . . . . . . 8 ⊢ 𝐴 = (algSc‘𝑃) | |
8 | ply1scleq.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
9 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
10 | 6, 7, 8, 9 | ply1sclcl 21367 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝐵) → (𝐴‘𝐸) ∈ (Base‘𝑃)) |
11 | 4, 5, 10 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴‘𝐸) ∈ (Base‘𝑃)) |
12 | ply1scleq.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | 6, 7, 8, 9 | ply1sclcl 21367 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐴‘𝐹) ∈ (Base‘𝑃)) |
14 | 4, 12, 13 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴‘𝐹) ∈ (Base‘𝑃)) |
15 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘(𝐴‘𝐸)) = (coe1‘(𝐴‘𝐸)) | |
16 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘(𝐴‘𝐹)) = (coe1‘(𝐴‘𝐹)) | |
17 | 6, 9, 15, 16 | ply1coe1eq 21379 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐴‘𝐸) ∈ (Base‘𝑃) ∧ (𝐴‘𝐹) ∈ (Base‘𝑃)) → (∀𝑑 ∈ ℕ0 ((coe1‘(𝐴‘𝐸))‘𝑑) = ((coe1‘(𝐴‘𝐹))‘𝑑) ↔ (𝐴‘𝐸) = (𝐴‘𝐹))) |
18 | 4, 11, 14, 17 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (∀𝑑 ∈ ℕ0 ((coe1‘(𝐴‘𝐸))‘𝑑) = ((coe1‘(𝐴‘𝐹))‘𝑑) ↔ (𝐴‘𝐸) = (𝐴‘𝐹))) |
19 | 18 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → ∀𝑑 ∈ ℕ0 ((coe1‘(𝐴‘𝐸))‘𝑑) = ((coe1‘(𝐴‘𝐹))‘𝑑)) |
20 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → 0 ∈ ℕ0) |
22 | 3, 19, 21 | rspcdva 3554 | . . 3 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → ((coe1‘(𝐴‘𝐸))‘0) = ((coe1‘(𝐴‘𝐹))‘0)) |
23 | 6, 7, 8 | ply1sclid 21369 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝐵) → 𝐸 = ((coe1‘(𝐴‘𝐸))‘0)) |
24 | 4, 5, 23 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐸 = ((coe1‘(𝐴‘𝐸))‘0)) |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → 𝐸 = ((coe1‘(𝐴‘𝐸))‘0)) |
26 | 6, 7, 8 | ply1sclid 21369 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → 𝐹 = ((coe1‘(𝐴‘𝐹))‘0)) |
27 | 4, 12, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐹 = ((coe1‘(𝐴‘𝐹))‘0)) |
28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → 𝐹 = ((coe1‘(𝐴‘𝐹))‘0)) |
29 | 22, 25, 28 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ (𝐴‘𝐸) = (𝐴‘𝐹)) → 𝐸 = 𝐹) |
30 | fveq2 6756 | . . 3 ⊢ (𝐸 = 𝐹 → (𝐴‘𝐸) = (𝐴‘𝐹)) | |
31 | 30 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐸 = 𝐹) → (𝐴‘𝐸) = (𝐴‘𝐹)) |
32 | 29, 31 | impbida 797 | 1 ⊢ (𝜑 → ((𝐴‘𝐸) = (𝐴‘𝐹) ↔ 𝐸 = 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 0cc0 10802 ℕ0cn0 12163 Basecbs 16840 Ringcrg 19698 algSccascl 20969 Poly1cpl1 21258 coe1cco1 21259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 |
This theorem is referenced by: ply1chr 31571 |
Copyright terms: Public domain | W3C validator |