![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1scleq | Structured version Visualization version GIF version |
Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
ply1scleq.p | β’ π = (Poly1βπ ) |
ply1scleq.b | β’ π΅ = (Baseβπ ) |
ply1scleq.a | β’ π΄ = (algScβπ) |
ply1scleq.r | β’ (π β π β Ring) |
ply1scleq.e | β’ (π β πΈ β π΅) |
ply1scleq.f | β’ (π β πΉ β π΅) |
Ref | Expression |
---|---|
ply1scleq | β’ (π β ((π΄βπΈ) = (π΄βπΉ) β πΈ = πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6846 | . . . . 5 β’ (π = 0 β ((coe1β(π΄βπΈ))βπ) = ((coe1β(π΄βπΈ))β0)) | |
2 | fveq2 6846 | . . . . 5 β’ (π = 0 β ((coe1β(π΄βπΉ))βπ) = ((coe1β(π΄βπΉ))β0)) | |
3 | 1, 2 | eqeq12d 2749 | . . . 4 β’ (π = 0 β (((coe1β(π΄βπΈ))βπ) = ((coe1β(π΄βπΉ))βπ) β ((coe1β(π΄βπΈ))β0) = ((coe1β(π΄βπΉ))β0))) |
4 | ply1scleq.r | . . . . . 6 β’ (π β π β Ring) | |
5 | ply1scleq.e | . . . . . . 7 β’ (π β πΈ β π΅) | |
6 | ply1scleq.p | . . . . . . . 8 β’ π = (Poly1βπ ) | |
7 | ply1scleq.a | . . . . . . . 8 β’ π΄ = (algScβπ) | |
8 | ply1scleq.b | . . . . . . . 8 β’ π΅ = (Baseβπ ) | |
9 | eqid 2733 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
10 | 6, 7, 8, 9 | ply1sclcl 21680 | . . . . . . 7 β’ ((π β Ring β§ πΈ β π΅) β (π΄βπΈ) β (Baseβπ)) |
11 | 4, 5, 10 | syl2anc 585 | . . . . . 6 β’ (π β (π΄βπΈ) β (Baseβπ)) |
12 | ply1scleq.f | . . . . . . 7 β’ (π β πΉ β π΅) | |
13 | 6, 7, 8, 9 | ply1sclcl 21680 | . . . . . . 7 β’ ((π β Ring β§ πΉ β π΅) β (π΄βπΉ) β (Baseβπ)) |
14 | 4, 12, 13 | syl2anc 585 | . . . . . 6 β’ (π β (π΄βπΉ) β (Baseβπ)) |
15 | eqid 2733 | . . . . . . 7 β’ (coe1β(π΄βπΈ)) = (coe1β(π΄βπΈ)) | |
16 | eqid 2733 | . . . . . . 7 β’ (coe1β(π΄βπΉ)) = (coe1β(π΄βπΉ)) | |
17 | 6, 9, 15, 16 | ply1coe1eq 21692 | . . . . . 6 β’ ((π β Ring β§ (π΄βπΈ) β (Baseβπ) β§ (π΄βπΉ) β (Baseβπ)) β (βπ β β0 ((coe1β(π΄βπΈ))βπ) = ((coe1β(π΄βπΉ))βπ) β (π΄βπΈ) = (π΄βπΉ))) |
18 | 4, 11, 14, 17 | syl3anc 1372 | . . . . 5 β’ (π β (βπ β β0 ((coe1β(π΄βπΈ))βπ) = ((coe1β(π΄βπΉ))βπ) β (π΄βπΈ) = (π΄βπΉ))) |
19 | 18 | biimpar 479 | . . . 4 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β βπ β β0 ((coe1β(π΄βπΈ))βπ) = ((coe1β(π΄βπΉ))βπ)) |
20 | 0nn0 12436 | . . . . 5 β’ 0 β β0 | |
21 | 20 | a1i 11 | . . . 4 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β 0 β β0) |
22 | 3, 19, 21 | rspcdva 3584 | . . 3 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β ((coe1β(π΄βπΈ))β0) = ((coe1β(π΄βπΉ))β0)) |
23 | 6, 7, 8 | ply1sclid 21682 | . . . . 5 β’ ((π β Ring β§ πΈ β π΅) β πΈ = ((coe1β(π΄βπΈ))β0)) |
24 | 4, 5, 23 | syl2anc 585 | . . . 4 β’ (π β πΈ = ((coe1β(π΄βπΈ))β0)) |
25 | 24 | adantr 482 | . . 3 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β πΈ = ((coe1β(π΄βπΈ))β0)) |
26 | 6, 7, 8 | ply1sclid 21682 | . . . . 5 β’ ((π β Ring β§ πΉ β π΅) β πΉ = ((coe1β(π΄βπΉ))β0)) |
27 | 4, 12, 26 | syl2anc 585 | . . . 4 β’ (π β πΉ = ((coe1β(π΄βπΉ))β0)) |
28 | 27 | adantr 482 | . . 3 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β πΉ = ((coe1β(π΄βπΉ))β0)) |
29 | 22, 25, 28 | 3eqtr4d 2783 | . 2 β’ ((π β§ (π΄βπΈ) = (π΄βπΉ)) β πΈ = πΉ) |
30 | fveq2 6846 | . . 3 β’ (πΈ = πΉ β (π΄βπΈ) = (π΄βπΉ)) | |
31 | 30 | adantl 483 | . 2 β’ ((π β§ πΈ = πΉ) β (π΄βπΈ) = (π΄βπΉ)) |
32 | 29, 31 | impbida 800 | 1 β’ (π β ((π΄βπΈ) = (π΄βπΉ) β πΈ = πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3061 βcfv 6500 0cc0 11059 β0cn0 12421 Basecbs 17091 Ringcrg 19972 algSccascl 21281 Poly1cpl1 21571 coe1cco1 21572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-ofr 7622 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-pm 8774 df-ixp 8842 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-sup 9386 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-dec 12627 df-uz 12772 df-fz 13434 df-fzo 13577 df-seq 13916 df-hash 14240 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-sca 17157 df-vsca 17158 df-ip 17159 df-tset 17160 df-ple 17161 df-ds 17163 df-hom 17165 df-cco 17166 df-0g 17331 df-gsum 17332 df-prds 17337 df-pws 17339 df-mre 17474 df-mrc 17475 df-acs 17477 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-mhm 18609 df-submnd 18610 df-grp 18759 df-minusg 18760 df-sbg 18761 df-mulg 18881 df-subg 18933 df-ghm 19014 df-cntz 19105 df-cmn 19572 df-abl 19573 df-mgp 19905 df-ur 19922 df-srg 19926 df-ring 19974 df-subrg 20262 df-lmod 20367 df-lss 20437 df-ascl 21284 df-psr 21334 df-mvr 21335 df-mpl 21336 df-opsr 21338 df-psr1 21574 df-vr1 21575 df-ply1 21576 df-coe1 21577 |
This theorem is referenced by: ply1chr 32338 |
Copyright terms: Public domain | W3C validator |