Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1scleq Structured version   Visualization version   GIF version

Theorem ply1scleq 31382
Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
ply1scleq.p 𝑃 = (Poly1𝑅)
ply1scleq.b 𝐵 = (Base‘𝑅)
ply1scleq.a 𝐴 = (algSc‘𝑃)
ply1scleq.r (𝜑𝑅 ∈ Ring)
ply1scleq.e (𝜑𝐸𝐵)
ply1scleq.f (𝜑𝐹𝐵)
Assertion
Ref Expression
ply1scleq (𝜑 → ((𝐴𝐸) = (𝐴𝐹) ↔ 𝐸 = 𝐹))

Proof of Theorem ply1scleq
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6717 . . . . 5 (𝑑 = 0 → ((coe1‘(𝐴𝐸))‘𝑑) = ((coe1‘(𝐴𝐸))‘0))
2 fveq2 6717 . . . . 5 (𝑑 = 0 → ((coe1‘(𝐴𝐹))‘𝑑) = ((coe1‘(𝐴𝐹))‘0))
31, 2eqeq12d 2753 . . . 4 (𝑑 = 0 → (((coe1‘(𝐴𝐸))‘𝑑) = ((coe1‘(𝐴𝐹))‘𝑑) ↔ ((coe1‘(𝐴𝐸))‘0) = ((coe1‘(𝐴𝐹))‘0)))
4 ply1scleq.r . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ply1scleq.e . . . . . . 7 (𝜑𝐸𝐵)
6 ply1scleq.p . . . . . . . 8 𝑃 = (Poly1𝑅)
7 ply1scleq.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
8 ply1scleq.b . . . . . . . 8 𝐵 = (Base‘𝑅)
9 eqid 2737 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
106, 7, 8, 9ply1sclcl 21207 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝐵) → (𝐴𝐸) ∈ (Base‘𝑃))
114, 5, 10syl2anc 587 . . . . . 6 (𝜑 → (𝐴𝐸) ∈ (Base‘𝑃))
12 ply1scleq.f . . . . . . 7 (𝜑𝐹𝐵)
136, 7, 8, 9ply1sclcl 21207 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐴𝐹) ∈ (Base‘𝑃))
144, 12, 13syl2anc 587 . . . . . 6 (𝜑 → (𝐴𝐹) ∈ (Base‘𝑃))
15 eqid 2737 . . . . . . 7 (coe1‘(𝐴𝐸)) = (coe1‘(𝐴𝐸))
16 eqid 2737 . . . . . . 7 (coe1‘(𝐴𝐹)) = (coe1‘(𝐴𝐹))
176, 9, 15, 16ply1coe1eq 21219 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴𝐸) ∈ (Base‘𝑃) ∧ (𝐴𝐹) ∈ (Base‘𝑃)) → (∀𝑑 ∈ ℕ0 ((coe1‘(𝐴𝐸))‘𝑑) = ((coe1‘(𝐴𝐹))‘𝑑) ↔ (𝐴𝐸) = (𝐴𝐹)))
184, 11, 14, 17syl3anc 1373 . . . . 5 (𝜑 → (∀𝑑 ∈ ℕ0 ((coe1‘(𝐴𝐸))‘𝑑) = ((coe1‘(𝐴𝐹))‘𝑑) ↔ (𝐴𝐸) = (𝐴𝐹)))
1918biimpar 481 . . . 4 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → ∀𝑑 ∈ ℕ0 ((coe1‘(𝐴𝐸))‘𝑑) = ((coe1‘(𝐴𝐹))‘𝑑))
20 0nn0 12105 . . . . 5 0 ∈ ℕ0
2120a1i 11 . . . 4 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → 0 ∈ ℕ0)
223, 19, 21rspcdva 3539 . . 3 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → ((coe1‘(𝐴𝐸))‘0) = ((coe1‘(𝐴𝐹))‘0))
236, 7, 8ply1sclid 21209 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝐵) → 𝐸 = ((coe1‘(𝐴𝐸))‘0))
244, 5, 23syl2anc 587 . . . 4 (𝜑𝐸 = ((coe1‘(𝐴𝐸))‘0))
2524adantr 484 . . 3 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → 𝐸 = ((coe1‘(𝐴𝐸))‘0))
266, 7, 8ply1sclid 21209 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → 𝐹 = ((coe1‘(𝐴𝐹))‘0))
274, 12, 26syl2anc 587 . . . 4 (𝜑𝐹 = ((coe1‘(𝐴𝐹))‘0))
2827adantr 484 . . 3 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → 𝐹 = ((coe1‘(𝐴𝐹))‘0))
2922, 25, 283eqtr4d 2787 . 2 ((𝜑 ∧ (𝐴𝐸) = (𝐴𝐹)) → 𝐸 = 𝐹)
30 fveq2 6717 . . 3 (𝐸 = 𝐹 → (𝐴𝐸) = (𝐴𝐹))
3130adantl 485 . 2 ((𝜑𝐸 = 𝐹) → (𝐴𝐸) = (𝐴𝐹))
3229, 31impbida 801 1 (𝜑 → ((𝐴𝐸) = (𝐴𝐹) ↔ 𝐸 = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  cfv 6380  0cc0 10729  0cn0 12090  Basecbs 16760  Ringcrg 19562  algSccascl 20814  Poly1cpl1 21098  coe1cco1 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-tset 16821  df-ple 16822  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-srg 19521  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-ascl 20817  df-psr 20868  df-mvr 20869  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-vr1 21102  df-ply1 21103  df-coe1 21104
This theorem is referenced by:  ply1chr  31383
  Copyright terms: Public domain W3C validator