![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmat1ovd | Structured version Visualization version GIF version |
Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019.) |
Ref | Expression |
---|---|
pmatring.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmatring.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pmat0op.z | ⊢ 0 = (0g‘𝑃) |
pmat1op.o | ⊢ 1 = (1r‘𝑃) |
pmat1ovd.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
pmat1ovd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
pmat1ovd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
pmat1ovd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
pmat1ovd.u | ⊢ 𝑈 = (1r‘𝐶) |
Ref | Expression |
---|---|
pmat1ovd | ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.c | . 2 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
2 | pmat1op.o | . 2 ⊢ 1 = (1r‘𝑃) | |
3 | pmat0op.z | . 2 ⊢ 0 = (0g‘𝑃) | |
4 | pmat1ovd.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
5 | pmat1ovd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | pmatring.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | 6 | ply1ring 22088 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃 ∈ Ring) |
9 | pmat1ovd.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
10 | pmat1ovd.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
11 | pmat1ovd.u | . 2 ⊢ 𝑈 = (1r‘𝐶) | |
12 | 1, 2, 3, 4, 8, 9, 10, 11 | mat1ov 22271 | 1 ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ifcif 4520 ‘cfv 6533 (class class class)co 7401 Fincfn 8934 0gc0g 17383 1rcur 20075 Ringcrg 20127 Poly1cpl1 22018 Mat cmat 22228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-hom 17219 df-cco 17220 df-0g 17385 df-gsum 17386 df-prds 17391 df-pws 17393 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-mhm 18702 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18985 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-subrng 20435 df-subrg 20460 df-lmod 20697 df-lss 20768 df-sra 21010 df-rgmod 21011 df-dsmm 21594 df-frlm 21609 df-psr 21770 df-mpl 21772 df-opsr 21774 df-psr1 22021 df-ply1 22023 df-mamu 22207 df-mat 22229 |
This theorem is referenced by: pmat1ovscd 22523 decpmatid 22593 |
Copyright terms: Public domain | W3C validator |