MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem0 Structured version   Visualization version   GIF version

Theorem chpdmatlem0 22713
Description: Lemma 0 for chpdmat 22717. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
Assertion
Ref Expression
chpdmatlem0 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))

Proof of Theorem chpdmatlem0
StepHypRef Expression
1 chpdmat.p . . 3 𝑃 = (Poly1𝑅)
2 chpdmatlem.q . . 3 𝑄 = (𝑁 Mat 𝑃)
31, 2pmatlmod 22569 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4 chpdmat.x . . . . 5 𝑋 = (var1𝑅)
5 eqid 2727 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
64, 1, 5vr1cl 22110 . . . 4 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
76adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
81ply1ring 22140 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
92matsca2 22296 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑃 = (Scalar‘𝑄))
108, 9sylan2 592 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 = (Scalar‘𝑄))
1110eqcomd 2733 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝑃)
1211fveq2d 6895 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑄)) = (Base‘𝑃))
137, 12eleqtrrd 2831 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘(Scalar‘𝑄)))
141, 2pmatring 22568 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 eqid 2727 . . . 4 (Base‘𝑄) = (Base‘𝑄)
16 chpdmatlem.1 . . . 4 1 = (1r𝑄)
1715, 16ringidcl 20184 . . 3 (𝑄 ∈ Ring → 1 ∈ (Base‘𝑄))
1814, 17syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝑄))
19 eqid 2727 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
20 chpdmatlem.m . . 3 · = ( ·𝑠𝑄)
21 eqid 2727 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
2215, 19, 20, 21lmodvscl 20743 . 2 ((𝑄 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑄)) ∧ 1 ∈ (Base‘𝑄)) → (𝑋 · 1 ) ∈ (Base‘𝑄))
233, 13, 18, 22syl3anc 1369 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  Fincfn 8953  Basecbs 17165  Scalarcsca 17221   ·𝑠 cvsca 17222  0gc0g 17406  -gcsg 18877  mulGrpcmgp 20058  1rcur 20105  Ringcrg 20157  LModclmod 20725  algSccascl 21766  var1cv1 22069  Poly1cpl1 22070   Mat cmat 22281   CharPlyMat cchpmat 22702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-ofr 7678  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-sup 9451  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-fzo 13646  df-seq 13985  df-hash 14308  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-hom 17242  df-cco 17243  df-0g 17408  df-gsum 17409  df-prds 17414  df-pws 17416  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-submnd 18726  df-grp 18878  df-minusg 18879  df-sbg 18880  df-mulg 19008  df-subg 19062  df-ghm 19152  df-cntz 19252  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-subrng 20465  df-subrg 20490  df-lmod 20727  df-lss 20798  df-sra 21040  df-rgmod 21041  df-dsmm 21646  df-frlm 21661  df-psr 21822  df-mvr 21823  df-mpl 21824  df-opsr 21826  df-psr1 22073  df-vr1 22074  df-ply1 22075  df-mamu 22260  df-mat 22282
This theorem is referenced by:  chpdmatlem1  22714  chpdmatlem2  22715  chpdmatlem3  22716
  Copyright terms: Public domain W3C validator