![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpdmatlem0 | Structured version Visualization version GIF version |
Description: Lemma 0 for chpdmat 22763. (Contributed by AV, 18-Aug-2019.) |
Ref | Expression |
---|---|
chpdmat.c | β’ πΆ = (π CharPlyMat π ) |
chpdmat.p | β’ π = (Poly1βπ ) |
chpdmat.a | β’ π΄ = (π Mat π ) |
chpdmat.s | β’ π = (algScβπ) |
chpdmat.b | β’ π΅ = (Baseβπ΄) |
chpdmat.x | β’ π = (var1βπ ) |
chpdmat.0 | β’ 0 = (0gβπ ) |
chpdmat.g | β’ πΊ = (mulGrpβπ) |
chpdmat.m | β’ β = (-gβπ) |
chpdmatlem.q | β’ π = (π Mat π) |
chpdmatlem.1 | β’ 1 = (1rβπ) |
chpdmatlem.m | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
chpdmatlem0 | β’ ((π β Fin β§ π β Ring) β (π Β· 1 ) β (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpdmat.p | . . 3 β’ π = (Poly1βπ ) | |
2 | chpdmatlem.q | . . 3 β’ π = (π Mat π) | |
3 | 1, 2 | pmatlmod 22615 | . 2 β’ ((π β Fin β§ π β Ring) β π β LMod) |
4 | chpdmat.x | . . . . 5 β’ π = (var1βπ ) | |
5 | eqid 2728 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
6 | 4, 1, 5 | vr1cl 22143 | . . . 4 β’ (π β Ring β π β (Baseβπ)) |
7 | 6 | adantl 480 | . . 3 β’ ((π β Fin β§ π β Ring) β π β (Baseβπ)) |
8 | 1 | ply1ring 22173 | . . . . . 6 β’ (π β Ring β π β Ring) |
9 | 2 | matsca2 22342 | . . . . . 6 β’ ((π β Fin β§ π β Ring) β π = (Scalarβπ)) |
10 | 8, 9 | sylan2 591 | . . . . 5 β’ ((π β Fin β§ π β Ring) β π = (Scalarβπ)) |
11 | 10 | eqcomd 2734 | . . . 4 β’ ((π β Fin β§ π β Ring) β (Scalarβπ) = π) |
12 | 11 | fveq2d 6906 | . . 3 β’ ((π β Fin β§ π β Ring) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
13 | 7, 12 | eleqtrrd 2832 | . 2 β’ ((π β Fin β§ π β Ring) β π β (Baseβ(Scalarβπ))) |
14 | 1, 2 | pmatring 22614 | . . 3 β’ ((π β Fin β§ π β Ring) β π β Ring) |
15 | eqid 2728 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
16 | chpdmatlem.1 | . . . 4 β’ 1 = (1rβπ) | |
17 | 15, 16 | ringidcl 20209 | . . 3 β’ (π β Ring β 1 β (Baseβπ)) |
18 | 14, 17 | syl 17 | . 2 β’ ((π β Fin β§ π β Ring) β 1 β (Baseβπ)) |
19 | eqid 2728 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
20 | chpdmatlem.m | . . 3 β’ Β· = ( Β·π βπ) | |
21 | eqid 2728 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
22 | 15, 19, 20, 21 | lmodvscl 20768 | . 2 β’ ((π β LMod β§ π β (Baseβ(Scalarβπ)) β§ 1 β (Baseβπ)) β (π Β· 1 ) β (Baseβπ)) |
23 | 3, 13, 18, 22 | syl3anc 1368 | 1 β’ ((π β Fin β§ π β Ring) β (π Β· 1 ) β (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βcfv 6553 (class class class)co 7426 Fincfn 8970 Basecbs 17187 Scalarcsca 17243 Β·π cvsca 17244 0gc0g 17428 -gcsg 18899 mulGrpcmgp 20081 1rcur 20128 Ringcrg 20180 LModclmod 20750 algSccascl 21793 var1cv1 22102 Poly1cpl1 22103 Mat cmat 22327 CharPlyMat cchpmat 22748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-ofr 7692 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-subrng 20490 df-subrg 20515 df-lmod 20752 df-lss 20823 df-sra 21065 df-rgmod 21066 df-dsmm 21673 df-frlm 21688 df-psr 21849 df-mvr 21850 df-mpl 21851 df-opsr 21853 df-psr1 22106 df-vr1 22107 df-ply1 22108 df-mamu 22306 df-mat 22328 |
This theorem is referenced by: chpdmatlem1 22760 chpdmatlem2 22761 chpdmatlem3 22762 |
Copyright terms: Public domain | W3C validator |