![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1mul4 | Structured version Visualization version GIF version |
Description: Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1mul3.s | โข ๐ = (Poly1โ๐ ) |
coe1mul3.t | โข โ = (.rโ๐) |
coe1mul3.u | โข ยท = (.rโ๐ ) |
coe1mul3.b | โข ๐ต = (Baseโ๐) |
coe1mul3.d | โข ๐ท = ( deg1 โ๐ ) |
coe1mul4.z | โข 0 = (0gโ๐) |
coe1mul4.r | โข (๐ โ ๐ โ Ring) |
coe1mul4.f1 | โข (๐ โ ๐น โ ๐ต) |
coe1mul4.f2 | โข (๐ โ ๐น โ 0 ) |
coe1mul4.g1 | โข (๐ โ ๐บ โ ๐ต) |
coe1mul4.g2 | โข (๐ โ ๐บ โ 0 ) |
Ref | Expression |
---|---|
coe1mul4 | โข (๐ โ ((coe1โ(๐น โ ๐บ))โ((๐ทโ๐น) + (๐ทโ๐บ))) = (((coe1โ๐น)โ(๐ทโ๐น)) ยท ((coe1โ๐บ)โ(๐ทโ๐บ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1mul3.s | . 2 โข ๐ = (Poly1โ๐ ) | |
2 | coe1mul3.t | . 2 โข โ = (.rโ๐) | |
3 | coe1mul3.u | . 2 โข ยท = (.rโ๐ ) | |
4 | coe1mul3.b | . 2 โข ๐ต = (Baseโ๐) | |
5 | coe1mul3.d | . 2 โข ๐ท = ( deg1 โ๐ ) | |
6 | coe1mul4.r | . 2 โข (๐ โ ๐ โ Ring) | |
7 | coe1mul4.f1 | . 2 โข (๐ โ ๐น โ ๐ต) | |
8 | coe1mul4.f2 | . . 3 โข (๐ โ ๐น โ 0 ) | |
9 | coe1mul4.z | . . . 4 โข 0 = (0gโ๐) | |
10 | 5, 1, 9, 4 | deg1nn0cl 25613 | . . 3 โข ((๐ โ Ring โง ๐น โ ๐ต โง ๐น โ 0 ) โ (๐ทโ๐น) โ โ0) |
11 | 6, 7, 8, 10 | syl3anc 1371 | . 2 โข (๐ โ (๐ทโ๐น) โ โ0) |
12 | 11 | nn0red 12535 | . . 3 โข (๐ โ (๐ทโ๐น) โ โ) |
13 | 12 | leidd 11782 | . 2 โข (๐ โ (๐ทโ๐น) โค (๐ทโ๐น)) |
14 | coe1mul4.g1 | . 2 โข (๐ โ ๐บ โ ๐ต) | |
15 | coe1mul4.g2 | . . 3 โข (๐ โ ๐บ โ 0 ) | |
16 | 5, 1, 9, 4 | deg1nn0cl 25613 | . . 3 โข ((๐ โ Ring โง ๐บ โ ๐ต โง ๐บ โ 0 ) โ (๐ทโ๐บ) โ โ0) |
17 | 6, 14, 15, 16 | syl3anc 1371 | . 2 โข (๐ โ (๐ทโ๐บ) โ โ0) |
18 | 17 | nn0red 12535 | . . 3 โข (๐ โ (๐ทโ๐บ) โ โ) |
19 | 18 | leidd 11782 | . 2 โข (๐ โ (๐ทโ๐บ) โค (๐ทโ๐บ)) |
20 | 1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 17, 19 | coe1mul3 25624 | 1 โข (๐ โ ((coe1โ(๐น โ ๐บ))โ((๐ทโ๐น) + (๐ทโ๐บ))) = (((coe1โ๐น)โ(๐ทโ๐น)) ยท ((coe1โ๐บ)โ(๐ทโ๐บ)))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โ wne 2940 โcfv 6543 (class class class)co 7411 + caddc 11115 โ0cn0 12474 Basecbs 17146 .rcmulr 17200 0gc0g 17387 Ringcrg 20058 Poly1cpl1 21707 coe1cco1 21708 deg1 cdg1 25576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-fzo 13630 df-seq 13969 df-hash 14293 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-hom 17223 df-cco 17224 df-0g 17389 df-gsum 17390 df-prds 17395 df-pws 17397 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-mhm 18673 df-submnd 18674 df-grp 18824 df-minusg 18825 df-mulg 18953 df-subg 19005 df-ghm 19092 df-cntz 19183 df-cmn 19652 df-abl 19653 df-mgp 19990 df-ur 20007 df-ring 20060 df-cring 20061 df-cnfld 20951 df-psr 21468 df-mpl 21470 df-opsr 21472 df-psr1 21710 df-ply1 21712 df-coe1 21713 df-mdeg 25577 df-deg1 25578 |
This theorem is referenced by: deg1mul2 25639 mon1psubm 42030 |
Copyright terms: Public domain | W3C validator |