MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul4 Structured version   Visualization version   GIF version

Theorem coe1mul4 25253
Description: Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul4.z 0 = (0g𝑌)
coe1mul4.r (𝜑𝑅 ∈ Ring)
coe1mul4.f1 (𝜑𝐹𝐵)
coe1mul4.f2 (𝜑𝐹0 )
coe1mul4.g1 (𝜑𝐺𝐵)
coe1mul4.g2 (𝜑𝐺0 )
Assertion
Ref Expression
coe1mul4 (𝜑 → ((coe1‘(𝐹 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) = (((coe1𝐹)‘(𝐷𝐹)) · ((coe1𝐺)‘(𝐷𝐺))))

Proof of Theorem coe1mul4
StepHypRef Expression
1 coe1mul3.s . 2 𝑌 = (Poly1𝑅)
2 coe1mul3.t . 2 = (.r𝑌)
3 coe1mul3.u . 2 · = (.r𝑅)
4 coe1mul3.b . 2 𝐵 = (Base‘𝑌)
5 coe1mul3.d . 2 𝐷 = ( deg1𝑅)
6 coe1mul4.r . 2 (𝜑𝑅 ∈ Ring)
7 coe1mul4.f1 . 2 (𝜑𝐹𝐵)
8 coe1mul4.f2 . . 3 (𝜑𝐹0 )
9 coe1mul4.z . . . 4 0 = (0g𝑌)
105, 1, 9, 4deg1nn0cl 25241 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
116, 7, 8, 10syl3anc 1370 . 2 (𝜑 → (𝐷𝐹) ∈ ℕ0)
1211nn0red 12282 . . 3 (𝜑 → (𝐷𝐹) ∈ ℝ)
1312leidd 11529 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷𝐹))
14 coe1mul4.g1 . 2 (𝜑𝐺𝐵)
15 coe1mul4.g2 . . 3 (𝜑𝐺0 )
165, 1, 9, 4deg1nn0cl 25241 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
176, 14, 15, 16syl3anc 1370 . 2 (𝜑 → (𝐷𝐺) ∈ ℕ0)
1817nn0red 12282 . . 3 (𝜑 → (𝐷𝐺) ∈ ℝ)
1918leidd 11529 . 2 (𝜑 → (𝐷𝐺) ≤ (𝐷𝐺))
201, 2, 3, 4, 5, 6, 7, 11, 13, 14, 17, 19coe1mul3 25252 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) = (((coe1𝐹)‘(𝐷𝐹)) · ((coe1𝐺)‘(𝐷𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cfv 6427  (class class class)co 7268   + caddc 10862  0cn0 12221  Basecbs 16900  .rcmulr 16951  0gc0g 17138  Ringcrg 19771  Poly1cpl1 21336  coe1cco1 21337   deg1 cdg1 25204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937  ax-addf 10938  ax-mulf 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-ofr 7525  df-om 7704  df-1st 7821  df-2nd 7822  df-supp 7966  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-map 8605  df-pm 8606  df-ixp 8674  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fsupp 9117  df-sup 9189  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-fz 13228  df-fzo 13371  df-seq 13710  df-hash 14033  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-starv 16965  df-sca 16966  df-vsca 16967  df-tset 16969  df-ple 16970  df-ds 16972  df-unif 16973  df-0g 17140  df-gsum 17141  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-mhm 18418  df-submnd 18419  df-grp 18568  df-minusg 18569  df-mulg 18689  df-subg 18740  df-ghm 18820  df-cntz 18911  df-cmn 19376  df-abl 19377  df-mgp 19709  df-ur 19726  df-ring 19773  df-cring 19774  df-cnfld 20586  df-psr 21100  df-mpl 21102  df-opsr 21104  df-psr1 21339  df-ply1 21341  df-coe1 21342  df-mdeg 25205  df-deg1 25206
This theorem is referenced by:  deg1mul2  25267  mon1psubm  41017
  Copyright terms: Public domain W3C validator