![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relogexp | Structured version Visualization version GIF version |
Description: The natural logarithm of positive 𝐴 raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers 𝑁. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
relogexp | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(𝐴↑𝑁)) = (𝑁 · (log‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogcl 24854 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 10462 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ) |
3 | efexp 15308 | . . . . 5 ⊢ (((log‘𝐴) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (log‘𝐴))) = ((exp‘(log‘𝐴))↑𝑁)) | |
4 | 2, 3 | sylan 572 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (log‘𝐴))) = ((exp‘(log‘𝐴))↑𝑁)) |
5 | reeflog 24859 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | |
6 | 5 | oveq1d 6985 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((exp‘(log‘𝐴))↑𝑁) = (𝐴↑𝑁)) |
7 | 6 | adantr 473 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((exp‘(log‘𝐴))↑𝑁) = (𝐴↑𝑁)) |
8 | 4, 7 | eqtrd 2808 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (log‘𝐴))) = (𝐴↑𝑁)) |
9 | 8 | fveq2d 6497 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(exp‘(𝑁 · (log‘𝐴)))) = (log‘(𝐴↑𝑁))) |
10 | zre 11791 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | remulcl 10414 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (𝑁 · (log‘𝐴)) ∈ ℝ) | |
12 | 10, 1, 11 | syl2anr 587 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝑁 · (log‘𝐴)) ∈ ℝ) |
13 | relogef 24861 | . . 3 ⊢ ((𝑁 · (log‘𝐴)) ∈ ℝ → (log‘(exp‘(𝑁 · (log‘𝐴)))) = (𝑁 · (log‘𝐴))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(exp‘(𝑁 · (log‘𝐴)))) = (𝑁 · (log‘𝐴))) |
15 | 9, 14 | eqtr3d 2810 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(𝐴↑𝑁)) = (𝑁 · (log‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 ℝcr 10328 · cmul 10334 ℤcz 11787 ℝ+crp 12198 ↑cexp 13238 expce 15269 logclog 24833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 ax-addf 10408 ax-mulf 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7495 df-2nd 7496 df-supp 7628 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-2o 7900 df-oadd 7903 df-er 8083 df-map 8202 df-pm 8203 df-ixp 8254 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-fsupp 8623 df-fi 8664 df-sup 8695 df-inf 8696 df-oi 8763 df-card 9156 df-cda 9382 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-dec 11906 df-uz 12053 df-q 12157 df-rp 12199 df-xneg 12318 df-xadd 12319 df-xmul 12320 df-ioo 12552 df-ioc 12553 df-ico 12554 df-icc 12555 df-fz 12703 df-fzo 12844 df-fl 12971 df-mod 13047 df-seq 13179 df-exp 13239 df-fac 13443 df-bc 13472 df-hash 13500 df-shft 14281 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-limsup 14683 df-clim 14700 df-rlim 14701 df-sum 14898 df-ef 15275 df-sin 15277 df-cos 15278 df-pi 15280 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-starv 16430 df-sca 16431 df-vsca 16432 df-ip 16433 df-tset 16434 df-ple 16435 df-ds 16437 df-unif 16438 df-hom 16439 df-cco 16440 df-rest 16546 df-topn 16547 df-0g 16565 df-gsum 16566 df-topgen 16567 df-pt 16568 df-prds 16571 df-xrs 16625 df-qtop 16630 df-imas 16631 df-xps 16633 df-mre 16709 df-mrc 16710 df-acs 16712 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-submnd 17798 df-mulg 18006 df-cntz 18212 df-cmn 18662 df-psmet 20233 df-xmet 20234 df-met 20235 df-bl 20236 df-mopn 20237 df-fbas 20238 df-fg 20239 df-cnfld 20242 df-top 21200 df-topon 21217 df-topsp 21239 df-bases 21252 df-cld 21325 df-ntr 21326 df-cls 21327 df-nei 21404 df-lp 21442 df-perf 21443 df-cn 21533 df-cnp 21534 df-haus 21621 df-tx 21868 df-hmeo 22061 df-fil 22152 df-fm 22244 df-flim 22245 df-flf 22246 df-xms 22627 df-ms 22628 df-tms 22629 df-cncf 23183 df-limc 24161 df-dv 24162 df-log 24835 |
This theorem is referenced by: vmalelog 25477 chtub 25484 fsumvma2 25486 pclogsum 25487 chpchtsum 25491 chpub 25492 logfacubnd 25493 bposlem8 25563 chebbnd1lem1 25741 chebbnd1lem3 25743 chebbnd1 25744 pntlemb 25869 pntlemh 25871 pntlemr 25874 hgt750lem 31570 reglogexp 38887 stirlinglem4 41793 |
Copyright terms: Public domain | W3C validator |