| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lbslelsp | Structured version Visualization version GIF version | ||
| Description: The size of a basis 𝑋 of a vector space 𝑊 is less than the size of a generating set 𝑌. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| lbslelsp.b | ⊢ 𝐵 = (Base‘𝑊) |
| lbslelsp.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbslelsp.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lbslelsp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lbslelsp.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| lbslelsp.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| lbslelsp.1 | ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) |
| Ref | Expression |
|---|---|
| lbslelsp | ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbslelsp.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | 1 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑊 ∈ LVec) |
| 3 | lbslelsp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 4 | 3 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ∈ 𝐽) |
| 5 | simplr 768 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑠 ∈ 𝐽) | |
| 6 | lbslelsp.j | . . . . . . 7 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 7 | 6 | lvecdim 21043 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑋 ≈ 𝑠) |
| 8 | 2, 4, 5, 7 | syl3anc 1373 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ≈ 𝑠) |
| 9 | hasheni 14289 | . . . . 5 ⊢ (𝑋 ≈ 𝑠 → (♯‘𝑋) = (♯‘𝑠)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) = (♯‘𝑠)) |
| 11 | hashss 14350 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) | |
| 12 | 11 | ad4ant24 754 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) |
| 13 | 10, 12 | eqbrtrd 5124 | . . 3 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 14 | lbslelsp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 15 | lbslelsp.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑊 ∈ LVec) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ∈ Fin) | |
| 18 | lbslelsp.y | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ 𝐵) |
| 20 | lbslelsp.1 | . . . . 5 ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (𝐾‘𝑌) = 𝐵) |
| 22 | 14, 6, 15, 16, 17, 19, 21 | exsslsb 33565 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → ∃𝑠 ∈ 𝐽 𝑠 ⊆ 𝑌) |
| 23 | 13, 22 | r19.29a 3141 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 24 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → 𝑋 ∈ 𝐽) |
| 25 | hashxrcl 14298 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (♯‘𝑋) ∈ ℝ*) | |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ∈ ℝ*) |
| 27 | 26 | pnfged 13067 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ +∞) |
| 28 | 14 | fvexi 6854 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 30 | 29, 18 | ssexd 5274 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
| 31 | hashinf 14276 | . . . 4 ⊢ ((𝑌 ∈ V ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) | |
| 32 | 30, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) |
| 33 | 27, 32 | breqtrrd 5130 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 34 | 23, 33 | pm2.61dan 812 | 1 ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 ≈ cen 8892 Fincfn 8895 +∞cpnf 11181 ℝ*cxr 11183 ≤ cle 11185 ♯chash 14271 Basecbs 17155 LSpanclspn 20853 LBasisclbs 20957 LVecclvec 20985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-r1 9693 df-rank 9694 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ocomp 17217 df-0g 17380 df-mre 17523 df-mrc 17524 df-mri 17525 df-acs 17526 df-proset 18231 df-drs 18232 df-poset 18250 df-ipo 18463 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lbs 20958 df-lvec 20986 |
| This theorem is referenced by: fldextrspunlem1 33643 |
| Copyright terms: Public domain | W3C validator |