| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lbslelsp | Structured version Visualization version GIF version | ||
| Description: The size of a basis 𝑋 of a vector space 𝑊 is less than the size of a generating set 𝑌. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| lbslelsp.b | ⊢ 𝐵 = (Base‘𝑊) |
| lbslelsp.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbslelsp.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lbslelsp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lbslelsp.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| lbslelsp.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| lbslelsp.1 | ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) |
| Ref | Expression |
|---|---|
| lbslelsp | ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbslelsp.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | 1 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑊 ∈ LVec) |
| 3 | lbslelsp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 4 | 3 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ∈ 𝐽) |
| 5 | simplr 768 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑠 ∈ 𝐽) | |
| 6 | lbslelsp.j | . . . . . . 7 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 7 | 6 | lvecdim 21073 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑋 ≈ 𝑠) |
| 8 | 2, 4, 5, 7 | syl3anc 1373 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ≈ 𝑠) |
| 9 | hasheni 14319 | . . . . 5 ⊢ (𝑋 ≈ 𝑠 → (♯‘𝑋) = (♯‘𝑠)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) = (♯‘𝑠)) |
| 11 | hashss 14380 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) | |
| 12 | 11 | ad4ant24 754 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) |
| 13 | 10, 12 | eqbrtrd 5131 | . . 3 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 14 | lbslelsp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 15 | lbslelsp.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑊 ∈ LVec) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ∈ Fin) | |
| 18 | lbslelsp.y | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ 𝐵) |
| 20 | lbslelsp.1 | . . . . 5 ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (𝐾‘𝑌) = 𝐵) |
| 22 | 14, 6, 15, 16, 17, 19, 21 | exsslsb 33598 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → ∃𝑠 ∈ 𝐽 𝑠 ⊆ 𝑌) |
| 23 | 13, 22 | r19.29a 3142 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 24 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → 𝑋 ∈ 𝐽) |
| 25 | hashxrcl 14328 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (♯‘𝑋) ∈ ℝ*) | |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ∈ ℝ*) |
| 27 | 26 | pnfged 13097 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ +∞) |
| 28 | 14 | fvexi 6874 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 30 | 29, 18 | ssexd 5281 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
| 31 | hashinf 14306 | . . . 4 ⊢ ((𝑌 ∈ V ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) | |
| 32 | 30, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) |
| 33 | 27, 32 | breqtrrd 5137 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 34 | 23, 33 | pm2.61dan 812 | 1 ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 ≈ cen 8917 Fincfn 8920 +∞cpnf 11211 ℝ*cxr 11213 ≤ cle 11215 ♯chash 14301 Basecbs 17185 LSpanclspn 20883 LBasisclbs 20987 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-reg 9551 ax-inf2 9600 ax-ac2 10422 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-oi 9469 df-r1 9723 df-rank 9724 df-card 9898 df-acn 9901 df-ac 10075 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-tset 17245 df-ple 17246 df-ocomp 17247 df-0g 17410 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lbs 20988 df-lvec 21016 |
| This theorem is referenced by: fldextrspunlem1 33676 |
| Copyright terms: Public domain | W3C validator |