Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslelsp Structured version   Visualization version   GIF version

Theorem lbslelsp 33566
Description: The size of a basis 𝑋 of a vector space 𝑊 is less than the size of a generating set 𝑌. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
lbslelsp.b 𝐵 = (Base‘𝑊)
lbslelsp.j 𝐽 = (LBasis‘𝑊)
lbslelsp.k 𝐾 = (LSpan‘𝑊)
lbslelsp.w (𝜑𝑊 ∈ LVec)
lbslelsp.x (𝜑𝑋𝐽)
lbslelsp.y (𝜑𝑌𝐵)
lbslelsp.1 (𝜑 → (𝐾𝑌) = 𝐵)
Assertion
Ref Expression
lbslelsp (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌))

Proof of Theorem lbslelsp
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lbslelsp.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
21ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → 𝑊 ∈ LVec)
3 lbslelsp.x . . . . . . 7 (𝜑𝑋𝐽)
43ad3antrrr 730 . . . . . 6 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → 𝑋𝐽)
5 simplr 768 . . . . . 6 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → 𝑠𝐽)
6 lbslelsp.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
76lvecdim 21043 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑋𝐽𝑠𝐽) → 𝑋𝑠)
82, 4, 5, 7syl3anc 1373 . . . . 5 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → 𝑋𝑠)
9 hasheni 14289 . . . . 5 (𝑋𝑠 → (♯‘𝑋) = (♯‘𝑠))
108, 9syl 17 . . . 4 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → (♯‘𝑋) = (♯‘𝑠))
11 hashss 14350 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑠𝑌) → (♯‘𝑠) ≤ (♯‘𝑌))
1211ad4ant24 754 . . . 4 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → (♯‘𝑠) ≤ (♯‘𝑌))
1310, 12eqbrtrd 5124 . . 3 ((((𝜑𝑌 ∈ Fin) ∧ 𝑠𝐽) ∧ 𝑠𝑌) → (♯‘𝑋) ≤ (♯‘𝑌))
14 lbslelsp.b . . . 4 𝐵 = (Base‘𝑊)
15 lbslelsp.k . . . 4 𝐾 = (LSpan‘𝑊)
161adantr 480 . . . 4 ((𝜑𝑌 ∈ Fin) → 𝑊 ∈ LVec)
17 simpr 484 . . . 4 ((𝜑𝑌 ∈ Fin) → 𝑌 ∈ Fin)
18 lbslelsp.y . . . . 5 (𝜑𝑌𝐵)
1918adantr 480 . . . 4 ((𝜑𝑌 ∈ Fin) → 𝑌𝐵)
20 lbslelsp.1 . . . . 5 (𝜑 → (𝐾𝑌) = 𝐵)
2120adantr 480 . . . 4 ((𝜑𝑌 ∈ Fin) → (𝐾𝑌) = 𝐵)
2214, 6, 15, 16, 17, 19, 21exsslsb 33565 . . 3 ((𝜑𝑌 ∈ Fin) → ∃𝑠𝐽 𝑠𝑌)
2313, 22r19.29a 3141 . 2 ((𝜑𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌))
243adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → 𝑋𝐽)
25 hashxrcl 14298 . . . . 5 (𝑋𝐽 → (♯‘𝑋) ∈ ℝ*)
2624, 25syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ∈ ℝ*)
2726pnfged 13067 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ +∞)
2814fvexi 6854 . . . . . 6 𝐵 ∈ V
2928a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
3029, 18ssexd 5274 . . . 4 (𝜑𝑌 ∈ V)
31 hashinf 14276 . . . 4 ((𝑌 ∈ V ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞)
3230, 31sylan 580 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞)
3327, 32breqtrrd 5130 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌))
3423, 33pm2.61dan 812 1 (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cfv 6499  cen 8892  Fincfn 8895  +∞cpnf 11181  *cxr 11183  cle 11185  chash 14271  Basecbs 17155  LSpanclspn 20853  LBasisclbs 20957  LVecclvec 20985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ocomp 17217  df-0g 17380  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18231  df-drs 18232  df-poset 18250  df-ipo 18463  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lbs 20958  df-lvec 20986
This theorem is referenced by:  fldextrspunlem1  33643
  Copyright terms: Public domain W3C validator