| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lbslelsp | Structured version Visualization version GIF version | ||
| Description: The size of a basis 𝑋 of a vector space 𝑊 is less than the size of a generating set 𝑌. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| lbslelsp.b | ⊢ 𝐵 = (Base‘𝑊) |
| lbslelsp.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbslelsp.k | ⊢ 𝐾 = (LSpan‘𝑊) |
| lbslelsp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lbslelsp.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| lbslelsp.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| lbslelsp.1 | ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) |
| Ref | Expression |
|---|---|
| lbslelsp | ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbslelsp.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | 1 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑊 ∈ LVec) |
| 3 | lbslelsp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 4 | 3 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ∈ 𝐽) |
| 5 | simplr 768 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑠 ∈ 𝐽) | |
| 6 | lbslelsp.j | . . . . . . 7 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 7 | 6 | lvecdim 21128 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑋 ≈ 𝑠) |
| 8 | 2, 4, 5, 7 | syl3anc 1372 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → 𝑋 ≈ 𝑠) |
| 9 | hasheni 14370 | . . . . 5 ⊢ (𝑋 ≈ 𝑠 → (♯‘𝑋) = (♯‘𝑠)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) = (♯‘𝑠)) |
| 11 | hashss 14431 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) | |
| 12 | 11 | ad4ant24 754 | . . . 4 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑠) ≤ (♯‘𝑌)) |
| 13 | 10, 12 | eqbrtrd 5145 | . . 3 ⊢ ((((𝜑 ∧ 𝑌 ∈ Fin) ∧ 𝑠 ∈ 𝐽) ∧ 𝑠 ⊆ 𝑌) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 14 | lbslelsp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 15 | lbslelsp.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑊) | |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑊 ∈ LVec) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ∈ Fin) | |
| 18 | lbslelsp.y | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ 𝐵) |
| 20 | lbslelsp.1 | . . . . 5 ⊢ (𝜑 → (𝐾‘𝑌) = 𝐵) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (𝐾‘𝑌) = 𝐵) |
| 22 | 14, 6, 15, 16, 17, 19, 21 | exsslsb 33587 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → ∃𝑠 ∈ 𝐽 𝑠 ⊆ 𝑌) |
| 23 | 13, 22 | r19.29a 3149 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 24 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → 𝑋 ∈ 𝐽) |
| 25 | hashxrcl 14379 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (♯‘𝑋) ∈ ℝ*) | |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ∈ ℝ*) |
| 27 | 26 | pnfged 13155 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ +∞) |
| 28 | 14 | fvexi 6900 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 30 | 29, 18 | ssexd 5304 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
| 31 | hashinf 14357 | . . . 4 ⊢ ((𝑌 ∈ V ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) | |
| 32 | 30, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑌) = +∞) |
| 33 | 27, 32 | breqtrrd 5151 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ Fin) → (♯‘𝑋) ≤ (♯‘𝑌)) |
| 34 | 23, 33 | pm2.61dan 812 | 1 ⊢ (𝜑 → (♯‘𝑋) ≤ (♯‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 ≈ cen 8964 Fincfn 8967 +∞cpnf 11274 ℝ*cxr 11276 ≤ cle 11278 ♯chash 14352 Basecbs 17230 LSpanclspn 20938 LBasisclbs 21042 LVecclvec 21070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-r1 9786 df-rank 9787 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-tset 17293 df-ple 17294 df-ocomp 17295 df-0g 17458 df-mre 17601 df-mrc 17602 df-mri 17603 df-acs 17604 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lbs 21043 df-lvec 21071 |
| This theorem is referenced by: fldextrspunlem1 33667 |
| Copyright terms: Public domain | W3C validator |