Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdlsmcl | Structured version Visualization version GIF version |
Description: Closure of dual subspace sum for the map defined by df-mapd 39851. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
mapdlsmcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdlsmcl.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdlsmcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdlsmcl.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdlsmcl.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdlsmcl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdlsmcl.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝑀) |
mapdlsmcl.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝑀) |
Ref | Expression |
---|---|
mapdlsmcl | ⊢ (𝜑 → (𝑋 ⊕ 𝑌) ∈ ran 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdlsmcl.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdlsmcl.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | mapdlsmcl.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 39818 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | mapdlsmcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ran 𝑀) | |
6 | mapdlsmcl.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
7 | eqid 2737 | . . . . 5 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
8 | 1, 6, 2, 7, 3 | mapdrn2 39877 | . . . 4 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
9 | 5, 8 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝐶)) |
10 | mapdlsmcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ran 𝑀) | |
11 | 10, 8 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝐶)) |
12 | mapdlsmcl.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐶) | |
13 | 7, 12 | lsmcl 20416 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ 𝑋 ∈ (LSubSp‘𝐶) ∧ 𝑌 ∈ (LSubSp‘𝐶)) → (𝑋 ⊕ 𝑌) ∈ (LSubSp‘𝐶)) |
14 | 4, 9, 11, 13 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 ⊕ 𝑌) ∈ (LSubSp‘𝐶)) |
15 | 14, 8 | eleqtrrd 2841 | 1 ⊢ (𝜑 → (𝑋 ⊕ 𝑌) ∈ ran 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ran crn 5606 ‘cfv 6463 (class class class)co 7313 LSSumclsm 19306 LModclmod 20194 LSubSpclss 20264 HLchlt 37576 LHypclh 38210 DVecHcdvh 39304 LCDualclcd 39812 mapdcmpd 39850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-riotaBAD 37179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-undef 8134 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-0g 17219 df-mre 17362 df-mrc 17363 df-acs 17365 df-proset 18080 df-poset 18098 df-plt 18115 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-p0 18210 df-p1 18211 df-lat 18217 df-clat 18284 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-subg 18819 df-cntz 18990 df-oppg 19017 df-lsm 19308 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-ring 19852 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-invr 19981 df-dvr 19992 df-drng 20064 df-lmod 20196 df-lss 20265 df-lsp 20305 df-lvec 20436 df-lsatoms 37202 df-lshyp 37203 df-lcv 37245 df-lfl 37284 df-lkr 37312 df-ldual 37350 df-oposet 37402 df-ol 37404 df-oml 37405 df-covers 37492 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 df-llines 37724 df-lplanes 37725 df-lvols 37726 df-lines 37727 df-psubsp 37729 df-pmap 37730 df-padd 38022 df-lhyp 38214 df-laut 38215 df-ldil 38330 df-ltrn 38331 df-trl 38385 df-tgrp 38969 df-tendo 38981 df-edring 38983 df-dveca 39229 df-disoa 39255 df-dvech 39305 df-dib 39365 df-dic 39399 df-dih 39455 df-doch 39574 df-djh 39621 df-lcdual 39813 df-mapd 39851 |
This theorem is referenced by: mapdlsm 39890 |
Copyright terms: Public domain | W3C validator |