Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pmatscmul | Structured version Visualization version GIF version |
Description: The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) |
Ref | Expression |
---|---|
1pmatscmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
1pmatscmul.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
1pmatscmul.b | ⊢ 𝐵 = (Base‘𝐶) |
1pmatscmul.e | ⊢ 𝐸 = (Base‘𝑃) |
1pmatscmul.m | ⊢ ∗ = ( ·𝑠 ‘𝐶) |
1pmatscmul.1 | ⊢ 1 = (1r‘𝐶) |
Ref | Expression |
---|---|
1pmatscmul | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pmatscmul.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 20987 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | anim2i 619 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
4 | 3 | 3adant3 1130 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
5 | simp3 1136 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 𝑄 ∈ 𝐸) | |
6 | 1pmatscmul.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
7 | 1, 6 | pmatring 21407 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
8 | 7 | 3adant3 1130 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 𝐶 ∈ Ring) |
9 | 1pmatscmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
10 | 1pmatscmul.1 | . . . 4 ⊢ 1 = (1r‘𝐶) | |
11 | 9, 10 | ringidcl 19404 | . . 3 ⊢ (𝐶 ∈ Ring → 1 ∈ 𝐵) |
12 | 8, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 1 ∈ 𝐵) |
13 | 1pmatscmul.e | . . 3 ⊢ 𝐸 = (Base‘𝑃) | |
14 | 1pmatscmul.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐶) | |
15 | 13, 6, 9, 14 | matvscl 21146 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑄 ∈ 𝐸 ∧ 1 ∈ 𝐵)) → (𝑄 ∗ 1 ) ∈ 𝐵) |
16 | 4, 5, 12, 15 | syl12anc 835 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6341 (class class class)co 7157 Fincfn 8541 Basecbs 16556 ·𝑠 cvsca 16642 1rcur 19334 Ringcrg 19380 Poly1cpl1 20916 Mat cmat 21122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-ot 4535 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-ofr 7413 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-sup 8953 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-fz 12954 df-fzo 13097 df-seq 13433 df-hash 13755 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-hom 16662 df-cco 16663 df-0g 16788 df-gsum 16789 df-prds 16794 df-pws 16796 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-mhm 18037 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-mulg 18307 df-subg 18358 df-ghm 18438 df-cntz 18529 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-ring 19382 df-subrg 19616 df-lmod 19719 df-lss 19787 df-sra 20027 df-rgmod 20028 df-dsmm 20512 df-frlm 20527 df-psr 20686 df-mpl 20688 df-opsr 20690 df-psr1 20919 df-ply1 20921 df-mamu 21101 df-mat 21123 |
This theorem is referenced by: pmatcollpwscmatlem2 21505 pmatcollpwscmat 21506 |
Copyright terms: Public domain | W3C validator |