![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pmatscmul | Structured version Visualization version GIF version |
Description: The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.) |
Ref | Expression |
---|---|
1pmatscmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
1pmatscmul.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
1pmatscmul.b | ⊢ 𝐵 = (Base‘𝐶) |
1pmatscmul.e | ⊢ 𝐸 = (Base‘𝑃) |
1pmatscmul.m | ⊢ ∗ = ( ·𝑠 ‘𝐶) |
1pmatscmul.1 | ⊢ 1 = (1r‘𝐶) |
Ref | Expression |
---|---|
1pmatscmul | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pmatscmul.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 20134 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | anim2i 608 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
4 | 3 | 3adant3 1113 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
5 | simp3 1119 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 𝑄 ∈ 𝐸) | |
6 | 1pmatscmul.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
7 | 1, 6 | pmatring 21020 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
8 | 7 | 3adant3 1113 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 𝐶 ∈ Ring) |
9 | 1pmatscmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
10 | 1pmatscmul.1 | . . . 4 ⊢ 1 = (1r‘𝐶) | |
11 | 9, 10 | ringidcl 19053 | . . 3 ⊢ (𝐶 ∈ Ring → 1 ∈ 𝐵) |
12 | 8, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → 1 ∈ 𝐵) |
13 | 1pmatscmul.e | . . 3 ⊢ 𝐸 = (Base‘𝑃) | |
14 | 1pmatscmul.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐶) | |
15 | 13, 6, 9, 14 | matvscl 20759 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑄 ∈ 𝐸 ∧ 1 ∈ 𝐵)) → (𝑄 ∗ 1 ) ∈ 𝐵) |
16 | 4, 5, 12, 15 | syl12anc 825 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸) → (𝑄 ∗ 1 ) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ‘cfv 6193 (class class class)co 6982 Fincfn 8312 Basecbs 16345 ·𝑠 cvsca 16431 1rcur 18986 Ringcrg 19032 Poly1cpl1 20063 Mat cmat 20735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-ot 4453 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-ofr 7234 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-er 8095 df-map 8214 df-pm 8215 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-sup 8707 df-oi 8775 df-card 9168 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-fz 12715 df-fzo 12856 df-seq 13191 df-hash 13512 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-hom 16451 df-cco 16452 df-0g 16577 df-gsum 16578 df-prds 16583 df-pws 16585 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-subrg 19268 df-lmod 19370 df-lss 19438 df-sra 19678 df-rgmod 19679 df-psr 19862 df-mpl 19864 df-opsr 19866 df-psr1 20066 df-ply1 20068 df-dsmm 20593 df-frlm 20608 df-mamu 20712 df-mat 20736 |
This theorem is referenced by: pmatcollpwscmatlem2 21117 pmatcollpwscmat 21118 |
Copyright terms: Public domain | W3C validator |