Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1sclcl | Structured version Visualization version GIF version |
Description: The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1scl.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1sclf.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1sclcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1scl.a | . . 3 ⊢ 𝐴 = (algSc‘𝑃) | |
3 | coe1scl.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | ply1sclf.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | ply1sclf 21060 | . 2 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) |
6 | 5 | ffvelrnda 6861 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 Basecbs 16586 Ringcrg 19416 algSccascl 20668 Poly1cpl1 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-ofr 7426 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-fzo 13125 df-seq 13461 df-hash 13783 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-tset 16687 df-ple 16688 df-0g 16818 df-gsum 16819 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-ghm 18474 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-subrg 19652 df-lmod 19755 df-lss 19823 df-ascl 20671 df-psr 20722 df-mpl 20724 df-opsr 20726 df-psr1 20955 df-ply1 20957 |
This theorem is referenced by: mat2pmatghm 21481 mat2pmatmul 21482 mat2pmatlin 21486 m2cpminvid2 21506 pmatcollpwlem 21531 pmatcollpwscmatlem2 21541 deg1sclle 24865 deg1scl 24866 ply1scleq 31240 ply1chr 31241 ply1fermltl 31242 |
Copyright terms: Public domain | W3C validator |