| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem1 | Structured version Visualization version GIF version | ||
| Description: Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025.) |
| Ref | Expression |
|---|---|
| aks5lem1.1 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem1.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem1.3 | ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
| aks5lem1.4 | ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) |
| aks5lem1.5 | ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) |
| aks5lem1.6 | ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) |
| aks5lem1.7 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
| Ref | Expression |
|---|---|
| aks5lem1 | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 5 | aks5lem1.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 6 | 5 | fldcrngd 20657 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CRing) |
| 7 | aks5lem1.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) | |
| 8 | aks5lem1.6 | . . 3 ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) | |
| 9 | 1, 2, 3, 4, 6, 7, 8 | evl1maprhm 22294 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾)) |
| 10 | eqid 2731 | . . 3 ⊢ (Poly1‘(ℤ/nℤ‘𝑁)) = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 11 | eqid 2731 | . . 3 ⊢ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) | |
| 12 | aks5lem1.4 | . . 3 ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) | |
| 13 | crngring 20163 | . . . . 5 ⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) | |
| 14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Ring) |
| 15 | aks5lem1.3 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) | |
| 16 | 15 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 17 | aks5lem1.2 | . . . . . 6 ⊢ 𝑃 = (chr‘𝐾) | |
| 18 | 17 | eqcomi 2740 | . . . . 5 ⊢ (chr‘𝐾) = 𝑃 |
| 19 | 15 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 20 | prmnn 16585 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 22 | 21 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 23 | 18, 22 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∈ ℤ) |
| 24 | 15 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| 25 | 18, 24 | eqbrtrid 5124 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∥ 𝑁) |
| 26 | eqid 2731 | . . . 4 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
| 27 | aks5lem1.5 | . . . 4 ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) | |
| 28 | 14, 16, 23, 25, 26, 27 | zndvdchrrhm 42075 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾)) |
| 29 | 10, 2, 11, 12, 28 | rhmply1 22301 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) |
| 30 | rhmco 20416 | . 2 ⊢ ((𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾) ∧ 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) | |
| 31 | 9, 29, 30 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 “ cima 5617 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ℕcn 12125 ℤcz 12468 ∥ cdvds 16163 ℙcprime 16582 Basecbs 17120 Ringcrg 20151 CRingccrg 20152 RingHom crh 20387 Fieldcfield 20645 ℤRHomczrh 21436 chrcchr 21438 ℤ/nℤczn 21439 Poly1cpl1 22089 eval1ce1 22229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-cntz 19229 df-od 19440 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-field 20647 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-chr 21442 df-zn 21443 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-evls1 22230 df-evl1 22231 |
| This theorem is referenced by: aks5lem2 42290 aks5lem3a 42292 |
| Copyright terms: Public domain | W3C validator |