![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem1 | Structured version Visualization version GIF version |
Description: Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025.) |
Ref | Expression |
---|---|
aks5lem1.1 | ⊢ (𝜑 → 𝐾 ∈ Field) |
aks5lem1.2 | ⊢ 𝑃 = (chr‘𝐾) |
aks5lem1.3 | ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
aks5lem1.4 | ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) |
aks5lem1.5 | ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) |
aks5lem1.6 | ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) |
aks5lem1.7 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
Ref | Expression |
---|---|
aks5lem1 | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
2 | eqid 2725 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
3 | eqid 2725 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | eqid 2725 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
5 | aks5lem1.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Field) | |
6 | 5 | fldcrngd 20649 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CRing) |
7 | aks5lem1.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) | |
8 | aks5lem1.6 | . . 3 ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) | |
9 | 1, 2, 3, 4, 6, 7, 8 | evl1maprhm 22323 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾)) |
10 | eqid 2725 | . . 3 ⊢ (Poly1‘(ℤ/nℤ‘𝑁)) = (Poly1‘(ℤ/nℤ‘𝑁)) | |
11 | eqid 2725 | . . 3 ⊢ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) | |
12 | aks5lem1.4 | . . 3 ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) | |
13 | crngring 20197 | . . . . 5 ⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) | |
14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Ring) |
15 | aks5lem1.3 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) | |
16 | 15 | simp2d 1140 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
17 | aks5lem1.2 | . . . . . 6 ⊢ 𝑃 = (chr‘𝐾) | |
18 | 17 | eqcomi 2734 | . . . . 5 ⊢ (chr‘𝐾) = 𝑃 |
19 | 15 | simp1d 1139 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
20 | prmnn 16648 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
22 | 21 | nnzd 12618 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
23 | 18, 22 | eqeltrid 2829 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∈ ℤ) |
24 | 15 | simp3d 1141 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
25 | 18, 24 | eqbrtrid 5184 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∥ 𝑁) |
26 | eqid 2725 | . . . 4 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
27 | aks5lem1.5 | . . . 4 ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) | |
28 | 14, 16, 23, 25, 26, 27 | zndvdchrrhm 41573 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾)) |
29 | 10, 2, 11, 12, 28 | rhmply1 22330 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) |
30 | rhmco 20452 | . 2 ⊢ ((𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾) ∧ 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) | |
31 | 9, 29, 30 | syl2anc 582 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cuni 4909 class class class wbr 5149 ↦ cmpt 5232 “ cima 5681 ∘ ccom 5682 ‘cfv 6549 (class class class)co 7419 ℕcn 12245 ℤcz 12591 ∥ cdvds 16234 ℙcprime 16645 Basecbs 17183 Ringcrg 20185 CRingccrg 20186 RingHom crh 20420 Fieldcfield 20637 ℤRHomczrh 21442 chrcchr 21444 ℤ/nℤczn 21445 Poly1cpl1 22119 eval1ce1 22258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-dvds 16235 df-prm 16646 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-imas 17493 df-qus 17494 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-nsg 19087 df-eqg 19088 df-ghm 19176 df-cntz 19280 df-od 19495 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-oppr 20285 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-field 20639 df-lmod 20757 df-lss 20828 df-lsp 20868 df-sra 21070 df-rgmod 21071 df-lidl 21116 df-rsp 21117 df-2idl 21157 df-cnfld 21297 df-zring 21390 df-zrh 21446 df-chr 21448 df-zn 21449 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-evl 22041 df-psr1 22122 df-vr1 22123 df-ply1 22124 df-coe1 22125 df-evls1 22259 df-evl1 22260 |
This theorem is referenced by: aks5lem2 41790 |
Copyright terms: Public domain | W3C validator |