![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem1 | Structured version Visualization version GIF version |
Description: Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025.) |
Ref | Expression |
---|---|
aks5lem1.1 | ⊢ (𝜑 → 𝐾 ∈ Field) |
aks5lem1.2 | ⊢ 𝑃 = (chr‘𝐾) |
aks5lem1.3 | ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
aks5lem1.4 | ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) |
aks5lem1.5 | ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) |
aks5lem1.6 | ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) |
aks5lem1.7 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
Ref | Expression |
---|---|
aks5lem1 | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
2 | eqid 2735 | . . 3 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
3 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | eqid 2735 | . . 3 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
5 | aks5lem1.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Field) | |
6 | 5 | fldcrngd 20759 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CRing) |
7 | aks5lem1.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) | |
8 | aks5lem1.6 | . . 3 ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) | |
9 | 1, 2, 3, 4, 6, 7, 8 | evl1maprhm 22399 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾)) |
10 | eqid 2735 | . . 3 ⊢ (Poly1‘(ℤ/nℤ‘𝑁)) = (Poly1‘(ℤ/nℤ‘𝑁)) | |
11 | eqid 2735 | . . 3 ⊢ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) | |
12 | aks5lem1.4 | . . 3 ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) | |
13 | crngring 20263 | . . . . 5 ⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) | |
14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Ring) |
15 | aks5lem1.3 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) | |
16 | 15 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
17 | aks5lem1.2 | . . . . . 6 ⊢ 𝑃 = (chr‘𝐾) | |
18 | 17 | eqcomi 2744 | . . . . 5 ⊢ (chr‘𝐾) = 𝑃 |
19 | 15 | simp1d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
20 | prmnn 16708 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
22 | 21 | nnzd 12638 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
23 | 18, 22 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∈ ℤ) |
24 | 15 | simp3d 1143 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
25 | 18, 24 | eqbrtrid 5183 | . . . 4 ⊢ (𝜑 → (chr‘𝐾) ∥ 𝑁) |
26 | eqid 2735 | . . . 4 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
27 | aks5lem1.5 | . . . 4 ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) | |
28 | 14, 16, 23, 25, 26, 27 | zndvdchrrhm 41953 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾)) |
29 | 10, 2, 11, 12, 28 | rhmply1 22406 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) |
30 | rhmco 20518 | . 2 ⊢ ((𝐻 ∈ ((Poly1‘𝐾) RingHom 𝐾) ∧ 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) | |
31 | 9, 29, 30 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 “ cima 5692 ∘ ccom 5693 ‘cfv 6563 (class class class)co 7431 ℕcn 12264 ℤcz 12611 ∥ cdvds 16287 ℙcprime 16705 Basecbs 17245 Ringcrg 20251 CRingccrg 20252 RingHom crh 20486 Fieldcfield 20747 ℤRHomczrh 21528 chrcchr 21530 ℤ/nℤczn 21531 Poly1cpl1 22194 eval1ce1 22334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-imas 17555 df-qus 17556 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-cntz 19348 df-od 19561 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-oppr 20351 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-field 20749 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-chr 21534 df-zn 21535 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 df-evls1 22335 df-evl1 22336 |
This theorem is referenced by: aks5lem2 42169 aks5lem3a 42171 |
Copyright terms: Public domain | W3C validator |