Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitprodclb Structured version   Visualization version   GIF version

Theorem unitprodclb 33404
Description: A finite product is a unit iff all factors are units. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
unitprodclb.1 𝐵 = (Base‘𝑅)
unitprodclb.u 𝑈 = (Unit‘𝑅)
unitprodclb.m 𝑀 = (mulGrp‘𝑅)
unitprodclb.r (𝜑𝑅 ∈ CRing)
unitprodclb.f (𝜑𝐹 ∈ Word 𝐵)
Assertion
Ref Expression
unitprodclb (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))

Proof of Theorem unitprodclb
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitprodclb.f . 2 (𝜑𝐹 ∈ Word 𝐵)
2 unitprodclb.r . 2 (𝜑𝑅 ∈ CRing)
3 oveq2 7413 . . . . . 6 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
43eleq1d 2819 . . . . 5 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg ∅) ∈ 𝑈))
5 rneq 5916 . . . . . 6 (𝑔 = ∅ → ran 𝑔 = ran ∅)
65sseq1d 3990 . . . . 5 (𝑔 = ∅ → (ran 𝑔𝑈 ↔ ran ∅ ⊆ 𝑈))
74, 6bibi12d 345 . . . 4 (𝑔 = ∅ → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈)))
87imbi2d 340 . . 3 (𝑔 = ∅ → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))))
9 oveq2 7413 . . . . . 6 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
109eleq1d 2819 . . . . 5 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝑓) ∈ 𝑈))
11 rneq 5916 . . . . . 6 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
1211sseq1d 3990 . . . . 5 (𝑔 = 𝑓 → (ran 𝑔𝑈 ↔ ran 𝑓𝑈))
1310, 12bibi12d 345 . . . 4 (𝑔 = 𝑓 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)))
1413imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))))
15 oveq2 7413 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
1615eleq1d 2819 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈))
17 rneq 5916 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ran 𝑔 = ran (𝑓 ++ ⟨“𝑥”⟩))
1817sseq1d 3990 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (ran 𝑔𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
1916, 18bibi12d 345 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈)))
2019imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
21 oveq2 7413 . . . . . 6 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
2221eleq1d 2819 . . . . 5 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝐹) ∈ 𝑈))
23 rneq 5916 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2423sseq1d 3990 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔𝑈 ↔ ran 𝐹𝑈))
2522, 24bibi12d 345 . . . 4 (𝑔 = 𝐹 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
2625imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))))
27 unitprodclb.m . . . . . . 7 𝑀 = (mulGrp‘𝑅)
28 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
2927, 28ringidval 20143 . . . . . 6 (1r𝑅) = (0g𝑀)
3029gsum0 18662 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
31 crngring 20205 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32 unitprodclb.u . . . . . . 7 𝑈 = (Unit‘𝑅)
3332, 281unit 20334 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
3431, 33syl 17 . . . . 5 (𝑅 ∈ CRing → (1r𝑅) ∈ 𝑈)
3530, 34eqeltrid 2838 . . . 4 (𝑅 ∈ CRing → (𝑀 Σg ∅) ∈ 𝑈)
36 rn0 5905 . . . . . 6 ran ∅ = ∅
37 0ss 4375 . . . . . 6 ∅ ⊆ 𝑈
3836, 37eqsstri 4005 . . . . 5 ran ∅ ⊆ 𝑈
3938a1i 11 . . . 4 (𝑅 ∈ CRing → ran ∅ ⊆ 𝑈)
4035, 392thd 265 . . 3 (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))
41 simplr 768 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑅 ∈ CRing)
42 unitprodclb.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4327, 42mgpbas 20105 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4427crngmgp 20201 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
4544ad2antlr 727 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ CMnd)
46 ovexd 7440 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (0..^(♯‘𝑓)) ∈ V)
47 wrdf 14536 . . . . . . . . . 10 (𝑓 ∈ Word 𝐵𝑓:(0..^(♯‘𝑓))⟶𝐵)
4847ad3antrrr 730 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
49 fvexd 6891 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (1r𝑅) ∈ V)
50 simplll 774 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 ∈ Word 𝐵)
5149, 50wrdfsupp 32912 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 finSupp (1r𝑅))
5243, 29, 45, 46, 48, 51gsumcl 19896 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg 𝑓) ∈ 𝐵)
53 simpllr 775 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑥𝐵)
54 eqid 2735 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5532, 54, 42unitmulclb 20341 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑀 Σg 𝑓) ∈ 𝐵𝑥𝐵) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
5641, 52, 53, 55syl3anc 1373 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
57 simpr 484 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))
58 vex 3463 . . . . . . . . . . . 12 𝑥 ∈ V
5958snss 4761 . . . . . . . . . . 11 (𝑥𝑈 ↔ {𝑥} ⊆ 𝑈)
60 s1rn 14617 . . . . . . . . . . . 12 (𝑥𝐵 → ran ⟨“𝑥”⟩ = {𝑥})
6160sseq1d 3990 . . . . . . . . . . 11 (𝑥𝐵 → (ran ⟨“𝑥”⟩ ⊆ 𝑈 ↔ {𝑥} ⊆ 𝑈))
6259, 61bitr4id 290 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6353, 62syl 17 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6457, 63anbi12d 632 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈)))
65 unss 4165 . . . . . . . 8 ((ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈)
6664, 65bitrdi 287 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6756, 66bitrd 279 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6827ringmgp 20199 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
6931, 68syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ Mnd)
7069ad2antlr 727 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ Mnd)
7127, 54mgpplusg 20104 . . . . . . . . 9 (.r𝑅) = (+g𝑀)
7243, 71gsumccatsn 18821 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7370, 50, 53, 72syl3anc 1373 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7473eleq1d 2819 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈))
7553s1cld 14621 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ⟨“𝑥”⟩ ∈ Word 𝐵)
76 ccatrn 14607 . . . . . . . 8 ((𝑓 ∈ Word 𝐵 ∧ ⟨“𝑥”⟩ ∈ Word 𝐵) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7750, 75, 76syl2anc 584 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7877sseq1d 3990 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
7967, 74, 783bitr4d 311 . . . . 5 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
8079exp31 419 . . . 4 ((𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑅 ∈ CRing → (((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
8180a2d 29 . . 3 ((𝑓 ∈ Word 𝐵𝑥𝐵) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
828, 14, 20, 26, 40, 81wrdind 14740 . 2 (𝐹 ∈ Word 𝐵 → (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
831, 2, 82sylc 65 1 (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  c0 4308  {csn 4601  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  ..^cfzo 13671  chash 14348  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613  Basecbs 17228  .rcmulr 17272   Σg cgsu 17454  Mndcmnd 18712  CMndccmn 19761  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194  Unitcui 20315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318
This theorem is referenced by:  1arithidom  33552
  Copyright terms: Public domain W3C validator