Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitprodclb Structured version   Visualization version   GIF version

Theorem unitprodclb 33397
Description: A finite product is a unit iff all factors are units. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
unitprodclb.1 𝐵 = (Base‘𝑅)
unitprodclb.u 𝑈 = (Unit‘𝑅)
unitprodclb.m 𝑀 = (mulGrp‘𝑅)
unitprodclb.r (𝜑𝑅 ∈ CRing)
unitprodclb.f (𝜑𝐹 ∈ Word 𝐵)
Assertion
Ref Expression
unitprodclb (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))

Proof of Theorem unitprodclb
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitprodclb.f . 2 (𝜑𝐹 ∈ Word 𝐵)
2 unitprodclb.r . 2 (𝜑𝑅 ∈ CRing)
3 oveq2 7439 . . . . . 6 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
43eleq1d 2824 . . . . 5 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg ∅) ∈ 𝑈))
5 rneq 5950 . . . . . 6 (𝑔 = ∅ → ran 𝑔 = ran ∅)
65sseq1d 4027 . . . . 5 (𝑔 = ∅ → (ran 𝑔𝑈 ↔ ran ∅ ⊆ 𝑈))
74, 6bibi12d 345 . . . 4 (𝑔 = ∅ → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈)))
87imbi2d 340 . . 3 (𝑔 = ∅ → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))))
9 oveq2 7439 . . . . . 6 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
109eleq1d 2824 . . . . 5 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝑓) ∈ 𝑈))
11 rneq 5950 . . . . . 6 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
1211sseq1d 4027 . . . . 5 (𝑔 = 𝑓 → (ran 𝑔𝑈 ↔ ran 𝑓𝑈))
1310, 12bibi12d 345 . . . 4 (𝑔 = 𝑓 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)))
1413imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))))
15 oveq2 7439 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
1615eleq1d 2824 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈))
17 rneq 5950 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ran 𝑔 = ran (𝑓 ++ ⟨“𝑥”⟩))
1817sseq1d 4027 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (ran 𝑔𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
1916, 18bibi12d 345 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈)))
2019imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
21 oveq2 7439 . . . . . 6 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
2221eleq1d 2824 . . . . 5 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝐹) ∈ 𝑈))
23 rneq 5950 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2423sseq1d 4027 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔𝑈 ↔ ran 𝐹𝑈))
2522, 24bibi12d 345 . . . 4 (𝑔 = 𝐹 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
2625imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))))
27 unitprodclb.m . . . . . . 7 𝑀 = (mulGrp‘𝑅)
28 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
2927, 28ringidval 20201 . . . . . 6 (1r𝑅) = (0g𝑀)
3029gsum0 18710 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
31 crngring 20263 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32 unitprodclb.u . . . . . . 7 𝑈 = (Unit‘𝑅)
3332, 281unit 20391 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
3431, 33syl 17 . . . . 5 (𝑅 ∈ CRing → (1r𝑅) ∈ 𝑈)
3530, 34eqeltrid 2843 . . . 4 (𝑅 ∈ CRing → (𝑀 Σg ∅) ∈ 𝑈)
36 rn0 5939 . . . . . 6 ran ∅ = ∅
37 0ss 4406 . . . . . 6 ∅ ⊆ 𝑈
3836, 37eqsstri 4030 . . . . 5 ran ∅ ⊆ 𝑈
3938a1i 11 . . . 4 (𝑅 ∈ CRing → ran ∅ ⊆ 𝑈)
4035, 392thd 265 . . 3 (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))
41 simplr 769 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑅 ∈ CRing)
42 unitprodclb.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4327, 42mgpbas 20158 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4427crngmgp 20259 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
4544ad2antlr 727 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ CMnd)
46 ovexd 7466 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (0..^(♯‘𝑓)) ∈ V)
47 wrdf 14554 . . . . . . . . . 10 (𝑓 ∈ Word 𝐵𝑓:(0..^(♯‘𝑓))⟶𝐵)
4847ad3antrrr 730 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
49 fvexd 6922 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (1r𝑅) ∈ V)
50 simplll 775 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 ∈ Word 𝐵)
5149, 50wrdfsupp 32906 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 finSupp (1r𝑅))
5243, 29, 45, 46, 48, 51gsumcl 19948 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg 𝑓) ∈ 𝐵)
53 simpllr 776 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑥𝐵)
54 eqid 2735 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5532, 54, 42unitmulclb 20398 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑀 Σg 𝑓) ∈ 𝐵𝑥𝐵) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
5641, 52, 53, 55syl3anc 1370 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
57 simpr 484 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))
58 vex 3482 . . . . . . . . . . . 12 𝑥 ∈ V
5958snss 4790 . . . . . . . . . . 11 (𝑥𝑈 ↔ {𝑥} ⊆ 𝑈)
60 s1rn 14634 . . . . . . . . . . . 12 (𝑥𝐵 → ran ⟨“𝑥”⟩ = {𝑥})
6160sseq1d 4027 . . . . . . . . . . 11 (𝑥𝐵 → (ran ⟨“𝑥”⟩ ⊆ 𝑈 ↔ {𝑥} ⊆ 𝑈))
6259, 61bitr4id 290 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6353, 62syl 17 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6457, 63anbi12d 632 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈)))
65 unss 4200 . . . . . . . 8 ((ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈)
6664, 65bitrdi 287 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6756, 66bitrd 279 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6827ringmgp 20257 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
6931, 68syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ Mnd)
7069ad2antlr 727 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ Mnd)
7127, 54mgpplusg 20156 . . . . . . . . 9 (.r𝑅) = (+g𝑀)
7243, 71gsumccatsn 18869 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7370, 50, 53, 72syl3anc 1370 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7473eleq1d 2824 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈))
7553s1cld 14638 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ⟨“𝑥”⟩ ∈ Word 𝐵)
76 ccatrn 14624 . . . . . . . 8 ((𝑓 ∈ Word 𝐵 ∧ ⟨“𝑥”⟩ ∈ Word 𝐵) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7750, 75, 76syl2anc 584 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7877sseq1d 4027 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
7967, 74, 783bitr4d 311 . . . . 5 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
8079exp31 419 . . . 4 ((𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑅 ∈ CRing → (((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
8180a2d 29 . . 3 ((𝑓 ∈ Word 𝐵𝑥𝐵) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
828, 14, 20, 26, 40, 81wrdind 14757 . 2 (𝐹 ∈ Word 𝐵 → (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
831, 2, 82sylc 65 1 (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  wss 3963  c0 4339  {csn 4631  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630  Basecbs 17245  .rcmulr 17299   Σg cgsu 17487  Mndcmnd 18760  CMndccmn 19813  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  CRingccrg 20252  Unitcui 20372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375
This theorem is referenced by:  1arithidom  33545
  Copyright terms: Public domain W3C validator