Step | Hyp | Ref
| Expression |
1 | | unitprodclb.f |
. 2
⊢ (𝜑 → 𝐹 ∈ Word 𝐵) |
2 | | unitprodclb.r |
. 2
⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | | oveq2 7456 |
. . . . . 6
⊢ (𝑔 = ∅ → (𝑀 Σg
𝑔) = (𝑀 Σg
∅)) |
4 | 3 | eleq1d 2829 |
. . . . 5
⊢ (𝑔 = ∅ → ((𝑀 Σg
𝑔) ∈ 𝑈 ↔ (𝑀 Σg ∅) ∈
𝑈)) |
5 | | rneq 5961 |
. . . . . 6
⊢ (𝑔 = ∅ → ran 𝑔 = ran ∅) |
6 | 5 | sseq1d 4040 |
. . . . 5
⊢ (𝑔 = ∅ → (ran 𝑔 ⊆ 𝑈 ↔ ran ∅ ⊆ 𝑈)) |
7 | 4, 6 | bibi12d 345 |
. . . 4
⊢ (𝑔 = ∅ → (((𝑀 Σg
𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈) ↔ ((𝑀 Σg ∅) ∈
𝑈 ↔ ran ∅
⊆ 𝑈))) |
8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑔 = ∅ → ((𝑅 ∈ CRing → ((𝑀 Σg
𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈
𝑈 ↔ ran ∅
⊆ 𝑈)))) |
9 | | oveq2 7456 |
. . . . . 6
⊢ (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓)) |
10 | 9 | eleq1d 2829 |
. . . . 5
⊢ (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝑓) ∈ 𝑈)) |
11 | | rneq 5961 |
. . . . . 6
⊢ (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓) |
12 | 11 | sseq1d 4040 |
. . . . 5
⊢ (𝑔 = 𝑓 → (ran 𝑔 ⊆ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) |
13 | 10, 12 | bibi12d 345 |
. . . 4
⊢ (𝑔 = 𝑓 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈) ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈))) |
14 | 13 | imbi2d 340 |
. . 3
⊢ (𝑔 = 𝑓 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)))) |
15 | | oveq2 7456 |
. . . . . 6
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ 〈“𝑥”〉))) |
16 | 15 | eleq1d 2829 |
. . . . 5
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈)) |
17 | | rneq 5961 |
. . . . . 6
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → ran 𝑔 = ran (𝑓 ++ 〈“𝑥”〉)) |
18 | 17 | sseq1d 4040 |
. . . . 5
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → (ran 𝑔 ⊆ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈)) |
19 | 16, 18 | bibi12d 345 |
. . . 4
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈) ↔ ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈))) |
20 | 19 | imbi2d 340 |
. . 3
⊢ (𝑔 = (𝑓 ++ 〈“𝑥”〉) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈)))) |
21 | | oveq2 7456 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹)) |
22 | 21 | eleq1d 2829 |
. . . . 5
⊢ (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝐹) ∈ 𝑈)) |
23 | | rneq 5961 |
. . . . . 6
⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) |
24 | 23 | sseq1d 4040 |
. . . . 5
⊢ (𝑔 = 𝐹 → (ran 𝑔 ⊆ 𝑈 ↔ ran 𝐹 ⊆ 𝑈)) |
25 | 22, 24 | bibi12d 345 |
. . . 4
⊢ (𝑔 = 𝐹 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈) ↔ ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈))) |
26 | 25 | imbi2d 340 |
. . 3
⊢ (𝑔 = 𝐹 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈)))) |
27 | | unitprodclb.m |
. . . . . . 7
⊢ 𝑀 = (mulGrp‘𝑅) |
28 | | eqid 2740 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
29 | 27, 28 | ringidval 20210 |
. . . . . 6
⊢
(1r‘𝑅) = (0g‘𝑀) |
30 | 29 | gsum0 18722 |
. . . . 5
⊢ (𝑀 Σg
∅) = (1r‘𝑅) |
31 | | crngring 20272 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
32 | | unitprodclb.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
33 | 32, 28 | 1unit 20400 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝑈) |
34 | 31, 33 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ CRing →
(1r‘𝑅)
∈ 𝑈) |
35 | 30, 34 | eqeltrid 2848 |
. . . 4
⊢ (𝑅 ∈ CRing → (𝑀 Σg
∅) ∈ 𝑈) |
36 | | rn0 5950 |
. . . . . 6
⊢ ran
∅ = ∅ |
37 | | 0ss 4423 |
. . . . . 6
⊢ ∅
⊆ 𝑈 |
38 | 36, 37 | eqsstri 4043 |
. . . . 5
⊢ ran
∅ ⊆ 𝑈 |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝑅 ∈ CRing → ran ∅
⊆ 𝑈) |
40 | 35, 39 | 2thd 265 |
. . 3
⊢ (𝑅 ∈ CRing → ((𝑀 Σg
∅) ∈ 𝑈 ↔
ran ∅ ⊆ 𝑈)) |
41 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑅 ∈ CRing) |
42 | | unitprodclb.1 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
43 | 27, 42 | mgpbas 20167 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
44 | 27 | crngmgp 20268 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
45 | 44 | ad2antlr 726 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑀 ∈ CMnd) |
46 | | ovexd 7483 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (0..^(♯‘𝑓)) ∈ V) |
47 | | wrdf 14567 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Word 𝐵 → 𝑓:(0..^(♯‘𝑓))⟶𝐵) |
48 | 47 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑓:(0..^(♯‘𝑓))⟶𝐵) |
49 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (1r‘𝑅) ∈ V) |
50 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑓 ∈ Word 𝐵) |
51 | 49, 50 | wrdfsupp 32903 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑓 finSupp (1r‘𝑅)) |
52 | 43, 29, 45, 46, 48, 51 | gsumcl 19957 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (𝑀 Σg 𝑓) ∈ 𝐵) |
53 | | simpllr 775 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑥 ∈ 𝐵) |
54 | | eqid 2740 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
55 | 32, 54, 42 | unitmulclb 20407 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝑀 Σg
𝑓) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (((𝑀 Σg 𝑓)(.r‘𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈))) |
56 | 41, 52, 53, 55 | syl3anc 1371 |
. . . . . . 7
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (((𝑀 Σg 𝑓)(.r‘𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈))) |
57 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) |
58 | | vex 3492 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
59 | 58 | snss 4810 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑈 ↔ {𝑥} ⊆ 𝑈) |
60 | | s1rn 14647 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → ran 〈“𝑥”〉 = {𝑥}) |
61 | 60 | sseq1d 4040 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (ran 〈“𝑥”〉 ⊆ 𝑈 ↔ {𝑥} ⊆ 𝑈)) |
62 | 59, 61 | bitr4id 290 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝑈 ↔ ran 〈“𝑥”〉 ⊆ 𝑈)) |
63 | 53, 62 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (𝑥 ∈ 𝑈 ↔ ran 〈“𝑥”〉 ⊆ 𝑈)) |
64 | 57, 63 | anbi12d 631 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ↔ (ran 𝑓 ⊆ 𝑈 ∧ ran 〈“𝑥”〉 ⊆ 𝑈))) |
65 | | unss 4213 |
. . . . . . . 8
⊢ ((ran
𝑓 ⊆ 𝑈 ∧ ran 〈“𝑥”〉 ⊆ 𝑈) ↔ (ran 𝑓 ∪ ran 〈“𝑥”〉) ⊆ 𝑈) |
66 | 64, 65 | bitrdi 287 |
. . . . . . 7
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) ↔ (ran 𝑓 ∪ ran 〈“𝑥”〉) ⊆ 𝑈)) |
67 | 56, 66 | bitrd 279 |
. . . . . 6
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (((𝑀 Σg 𝑓)(.r‘𝑅)𝑥) ∈ 𝑈 ↔ (ran 𝑓 ∪ ran 〈“𝑥”〉) ⊆ 𝑈)) |
68 | 27 | ringmgp 20266 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
69 | 31, 68 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑀 ∈ Mnd) |
70 | 69 | ad2antlr 726 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 𝑀 ∈ Mnd) |
71 | 27, 54 | mgpplusg 20165 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘𝑀) |
72 | 43, 71 | gsumccatsn 18878 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) = ((𝑀 Σg
𝑓)(.r‘𝑅)𝑥)) |
73 | 70, 50, 53, 72 | syl3anc 1371 |
. . . . . . 7
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) = ((𝑀 Σg
𝑓)(.r‘𝑅)𝑥)) |
74 | 73 | eleq1d 2829 |
. . . . . 6
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓)(.r‘𝑅)𝑥) ∈ 𝑈)) |
75 | 53 | s1cld 14651 |
. . . . . . . 8
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → 〈“𝑥”〉 ∈ Word 𝐵) |
76 | | ccatrn 14637 |
. . . . . . . 8
⊢ ((𝑓 ∈ Word 𝐵 ∧ 〈“𝑥”〉 ∈ Word 𝐵) → ran (𝑓 ++ 〈“𝑥”〉) = (ran 𝑓 ∪ ran 〈“𝑥”〉)) |
77 | 50, 75, 76 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → ran (𝑓 ++ 〈“𝑥”〉) = (ran 𝑓 ∪ ran 〈“𝑥”〉)) |
78 | 77 | sseq1d 4040 |
. . . . . 6
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈 ↔ (ran 𝑓 ∪ ran 〈“𝑥”〉) ⊆ 𝑈)) |
79 | 67, 74, 78 | 3bitr4d 311 |
. . . . 5
⊢ ((((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈)) |
80 | 79 | exp31 419 |
. . . 4
⊢ ((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑅 ∈ CRing → (((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈) → ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈)))) |
81 | 80 | a2d 29 |
. . 3
⊢ ((𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈)) → (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ 〈“𝑥”〉)) ∈ 𝑈 ↔ ran (𝑓 ++ 〈“𝑥”〉) ⊆ 𝑈)))) |
82 | 8, 14, 20, 26, 40, 81 | wrdind 14770 |
. 2
⊢ (𝐹 ∈ Word 𝐵 → (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈))) |
83 | 1, 2, 82 | sylc 65 |
1
⊢ (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈)) |