Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitprodclb Structured version   Visualization version   GIF version

Theorem unitprodclb 33417
Description: A finite product is a unit iff all factors are units. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
unitprodclb.1 𝐵 = (Base‘𝑅)
unitprodclb.u 𝑈 = (Unit‘𝑅)
unitprodclb.m 𝑀 = (mulGrp‘𝑅)
unitprodclb.r (𝜑𝑅 ∈ CRing)
unitprodclb.f (𝜑𝐹 ∈ Word 𝐵)
Assertion
Ref Expression
unitprodclb (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))

Proof of Theorem unitprodclb
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitprodclb.f . 2 (𝜑𝐹 ∈ Word 𝐵)
2 unitprodclb.r . 2 (𝜑𝑅 ∈ CRing)
3 oveq2 7439 . . . . . 6 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
43eleq1d 2826 . . . . 5 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg ∅) ∈ 𝑈))
5 rneq 5947 . . . . . 6 (𝑔 = ∅ → ran 𝑔 = ran ∅)
65sseq1d 4015 . . . . 5 (𝑔 = ∅ → (ran 𝑔𝑈 ↔ ran ∅ ⊆ 𝑈))
74, 6bibi12d 345 . . . 4 (𝑔 = ∅ → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈)))
87imbi2d 340 . . 3 (𝑔 = ∅ → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))))
9 oveq2 7439 . . . . . 6 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
109eleq1d 2826 . . . . 5 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝑓) ∈ 𝑈))
11 rneq 5947 . . . . . 6 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
1211sseq1d 4015 . . . . 5 (𝑔 = 𝑓 → (ran 𝑔𝑈 ↔ ran 𝑓𝑈))
1310, 12bibi12d 345 . . . 4 (𝑔 = 𝑓 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)))
1413imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))))
15 oveq2 7439 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
1615eleq1d 2826 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈))
17 rneq 5947 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ran 𝑔 = ran (𝑓 ++ ⟨“𝑥”⟩))
1817sseq1d 4015 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (ran 𝑔𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
1916, 18bibi12d 345 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈)))
2019imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
21 oveq2 7439 . . . . . 6 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
2221eleq1d 2826 . . . . 5 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝐹) ∈ 𝑈))
23 rneq 5947 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2423sseq1d 4015 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔𝑈 ↔ ran 𝐹𝑈))
2522, 24bibi12d 345 . . . 4 (𝑔 = 𝐹 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
2625imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))))
27 unitprodclb.m . . . . . . 7 𝑀 = (mulGrp‘𝑅)
28 eqid 2737 . . . . . . 7 (1r𝑅) = (1r𝑅)
2927, 28ringidval 20180 . . . . . 6 (1r𝑅) = (0g𝑀)
3029gsum0 18697 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
31 crngring 20242 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32 unitprodclb.u . . . . . . 7 𝑈 = (Unit‘𝑅)
3332, 281unit 20374 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
3431, 33syl 17 . . . . 5 (𝑅 ∈ CRing → (1r𝑅) ∈ 𝑈)
3530, 34eqeltrid 2845 . . . 4 (𝑅 ∈ CRing → (𝑀 Σg ∅) ∈ 𝑈)
36 rn0 5936 . . . . . 6 ran ∅ = ∅
37 0ss 4400 . . . . . 6 ∅ ⊆ 𝑈
3836, 37eqsstri 4030 . . . . 5 ran ∅ ⊆ 𝑈
3938a1i 11 . . . 4 (𝑅 ∈ CRing → ran ∅ ⊆ 𝑈)
4035, 392thd 265 . . 3 (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))
41 simplr 769 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑅 ∈ CRing)
42 unitprodclb.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4327, 42mgpbas 20142 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4427crngmgp 20238 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
4544ad2antlr 727 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ CMnd)
46 ovexd 7466 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (0..^(♯‘𝑓)) ∈ V)
47 wrdf 14557 . . . . . . . . . 10 (𝑓 ∈ Word 𝐵𝑓:(0..^(♯‘𝑓))⟶𝐵)
4847ad3antrrr 730 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
49 fvexd 6921 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (1r𝑅) ∈ V)
50 simplll 775 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 ∈ Word 𝐵)
5149, 50wrdfsupp 32921 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 finSupp (1r𝑅))
5243, 29, 45, 46, 48, 51gsumcl 19933 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg 𝑓) ∈ 𝐵)
53 simpllr 776 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑥𝐵)
54 eqid 2737 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5532, 54, 42unitmulclb 20381 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑀 Σg 𝑓) ∈ 𝐵𝑥𝐵) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
5641, 52, 53, 55syl3anc 1373 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
57 simpr 484 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))
58 vex 3484 . . . . . . . . . . . 12 𝑥 ∈ V
5958snss 4785 . . . . . . . . . . 11 (𝑥𝑈 ↔ {𝑥} ⊆ 𝑈)
60 s1rn 14637 . . . . . . . . . . . 12 (𝑥𝐵 → ran ⟨“𝑥”⟩ = {𝑥})
6160sseq1d 4015 . . . . . . . . . . 11 (𝑥𝐵 → (ran ⟨“𝑥”⟩ ⊆ 𝑈 ↔ {𝑥} ⊆ 𝑈))
6259, 61bitr4id 290 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6353, 62syl 17 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6457, 63anbi12d 632 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈)))
65 unss 4190 . . . . . . . 8 ((ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈)
6664, 65bitrdi 287 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6756, 66bitrd 279 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6827ringmgp 20236 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
6931, 68syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ Mnd)
7069ad2antlr 727 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ Mnd)
7127, 54mgpplusg 20141 . . . . . . . . 9 (.r𝑅) = (+g𝑀)
7243, 71gsumccatsn 18856 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7370, 50, 53, 72syl3anc 1373 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7473eleq1d 2826 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈))
7553s1cld 14641 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ⟨“𝑥”⟩ ∈ Word 𝐵)
76 ccatrn 14627 . . . . . . . 8 ((𝑓 ∈ Word 𝐵 ∧ ⟨“𝑥”⟩ ∈ Word 𝐵) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7750, 75, 76syl2anc 584 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7877sseq1d 4015 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
7967, 74, 783bitr4d 311 . . . . 5 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
8079exp31 419 . . . 4 ((𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑅 ∈ CRing → (((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
8180a2d 29 . . 3 ((𝑓 ∈ Word 𝐵𝑥𝐵) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
828, 14, 20, 26, 40, 81wrdind 14760 . 2 (𝐹 ∈ Word 𝐵 → (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
831, 2, 82sylc 65 1 (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  wss 3951  c0 4333  {csn 4626  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  Basecbs 17247  .rcmulr 17298   Σg cgsu 17485  Mndcmnd 18747  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Unitcui 20355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358
This theorem is referenced by:  1arithidom  33565
  Copyright terms: Public domain W3C validator