Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitprodclb Structured version   Visualization version   GIF version

Theorem unitprodclb 33382
Description: A finite product is a unit iff all factors are units. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
unitprodclb.1 𝐵 = (Base‘𝑅)
unitprodclb.u 𝑈 = (Unit‘𝑅)
unitprodclb.m 𝑀 = (mulGrp‘𝑅)
unitprodclb.r (𝜑𝑅 ∈ CRing)
unitprodclb.f (𝜑𝐹 ∈ Word 𝐵)
Assertion
Ref Expression
unitprodclb (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))

Proof of Theorem unitprodclb
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitprodclb.f . 2 (𝜑𝐹 ∈ Word 𝐵)
2 unitprodclb.r . 2 (𝜑𝑅 ∈ CRing)
3 oveq2 7456 . . . . . 6 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
43eleq1d 2829 . . . . 5 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg ∅) ∈ 𝑈))
5 rneq 5961 . . . . . 6 (𝑔 = ∅ → ran 𝑔 = ran ∅)
65sseq1d 4040 . . . . 5 (𝑔 = ∅ → (ran 𝑔𝑈 ↔ ran ∅ ⊆ 𝑈))
74, 6bibi12d 345 . . . 4 (𝑔 = ∅ → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈)))
87imbi2d 340 . . 3 (𝑔 = ∅ → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))))
9 oveq2 7456 . . . . . 6 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
109eleq1d 2829 . . . . 5 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝑓) ∈ 𝑈))
11 rneq 5961 . . . . . 6 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
1211sseq1d 4040 . . . . 5 (𝑔 = 𝑓 → (ran 𝑔𝑈 ↔ ran 𝑓𝑈))
1310, 12bibi12d 345 . . . 4 (𝑔 = 𝑓 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)))
1413imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))))
15 oveq2 7456 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
1615eleq1d 2829 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈))
17 rneq 5961 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ran 𝑔 = ran (𝑓 ++ ⟨“𝑥”⟩))
1817sseq1d 4040 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (ran 𝑔𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
1916, 18bibi12d 345 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈)))
2019imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
21 oveq2 7456 . . . . . 6 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
2221eleq1d 2829 . . . . 5 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ (𝑀 Σg 𝐹) ∈ 𝑈))
23 rneq 5961 . . . . . 6 (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹)
2423sseq1d 4040 . . . . 5 (𝑔 = 𝐹 → (ran 𝑔𝑈 ↔ ran 𝐹𝑈))
2522, 24bibi12d 345 . . . 4 (𝑔 = 𝐹 → (((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈) ↔ ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
2625imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑔) ∈ 𝑈 ↔ ran 𝑔𝑈)) ↔ (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))))
27 unitprodclb.m . . . . . . 7 𝑀 = (mulGrp‘𝑅)
28 eqid 2740 . . . . . . 7 (1r𝑅) = (1r𝑅)
2927, 28ringidval 20210 . . . . . 6 (1r𝑅) = (0g𝑀)
3029gsum0 18722 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
31 crngring 20272 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32 unitprodclb.u . . . . . . 7 𝑈 = (Unit‘𝑅)
3332, 281unit 20400 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
3431, 33syl 17 . . . . 5 (𝑅 ∈ CRing → (1r𝑅) ∈ 𝑈)
3530, 34eqeltrid 2848 . . . 4 (𝑅 ∈ CRing → (𝑀 Σg ∅) ∈ 𝑈)
36 rn0 5950 . . . . . 6 ran ∅ = ∅
37 0ss 4423 . . . . . 6 ∅ ⊆ 𝑈
3836, 37eqsstri 4043 . . . . 5 ran ∅ ⊆ 𝑈
3938a1i 11 . . . 4 (𝑅 ∈ CRing → ran ∅ ⊆ 𝑈)
4035, 392thd 265 . . 3 (𝑅 ∈ CRing → ((𝑀 Σg ∅) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈))
41 simplr 768 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑅 ∈ CRing)
42 unitprodclb.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4327, 42mgpbas 20167 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4427crngmgp 20268 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
4544ad2antlr 726 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ CMnd)
46 ovexd 7483 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (0..^(♯‘𝑓)) ∈ V)
47 wrdf 14567 . . . . . . . . . 10 (𝑓 ∈ Word 𝐵𝑓:(0..^(♯‘𝑓))⟶𝐵)
4847ad3antrrr 729 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
49 fvexd 6935 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (1r𝑅) ∈ V)
50 simplll 774 . . . . . . . . . 10 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 ∈ Word 𝐵)
5149, 50wrdfsupp 32903 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑓 finSupp (1r𝑅))
5243, 29, 45, 46, 48, 51gsumcl 19957 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg 𝑓) ∈ 𝐵)
53 simpllr 775 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑥𝐵)
54 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5532, 54, 42unitmulclb 20407 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑀 Σg 𝑓) ∈ 𝐵𝑥𝐵) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
5641, 52, 53, 55syl3anc 1371 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈)))
57 simpr 484 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈))
58 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
5958snss 4810 . . . . . . . . . . 11 (𝑥𝑈 ↔ {𝑥} ⊆ 𝑈)
60 s1rn 14647 . . . . . . . . . . . 12 (𝑥𝐵 → ran ⟨“𝑥”⟩ = {𝑥})
6160sseq1d 4040 . . . . . . . . . . 11 (𝑥𝐵 → (ran ⟨“𝑥”⟩ ⊆ 𝑈 ↔ {𝑥} ⊆ 𝑈))
6259, 61bitr4id 290 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6353, 62syl 17 . . . . . . . . 9 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑥𝑈 ↔ ran ⟨“𝑥”⟩ ⊆ 𝑈))
6457, 63anbi12d 631 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈)))
65 unss 4213 . . . . . . . 8 ((ran 𝑓𝑈 ∧ ran ⟨“𝑥”⟩ ⊆ 𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈)
6664, 65bitrdi 287 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓) ∈ 𝑈𝑥𝑈) ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6756, 66bitrd 279 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
6827ringmgp 20266 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
6931, 68syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑀 ∈ Mnd)
7069ad2antlr 726 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → 𝑀 ∈ Mnd)
7127, 54mgpplusg 20165 . . . . . . . . 9 (.r𝑅) = (+g𝑀)
7243, 71gsumccatsn 18878 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7370, 50, 53, 72syl3anc 1371 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
7473eleq1d 2829 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ∈ 𝑈))
7553s1cld 14651 . . . . . . . 8 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ⟨“𝑥”⟩ ∈ Word 𝐵)
76 ccatrn 14637 . . . . . . . 8 ((𝑓 ∈ Word 𝐵 ∧ ⟨“𝑥”⟩ ∈ Word 𝐵) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7750, 75, 76syl2anc 583 . . . . . . 7 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ran (𝑓 ++ ⟨“𝑥”⟩) = (ran 𝑓 ∪ ran ⟨“𝑥”⟩))
7877sseq1d 4040 . . . . . 6 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈 ↔ (ran 𝑓 ∪ ran ⟨“𝑥”⟩) ⊆ 𝑈))
7967, 74, 783bitr4d 311 . . . . 5 ((((𝑓 ∈ Word 𝐵𝑥𝐵) ∧ 𝑅 ∈ CRing) ∧ ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))
8079exp31 419 . . . 4 ((𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑅 ∈ CRing → (((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈) → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
8180a2d 29 . . 3 ((𝑓 ∈ Word 𝐵𝑥𝐵) → ((𝑅 ∈ CRing → ((𝑀 Σg 𝑓) ∈ 𝑈 ↔ ran 𝑓𝑈)) → (𝑅 ∈ CRing → ((𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ∈ 𝑈 ↔ ran (𝑓 ++ ⟨“𝑥”⟩) ⊆ 𝑈))))
828, 14, 20, 26, 40, 81wrdind 14770 . 2 (𝐹 ∈ Word 𝐵 → (𝑅 ∈ CRing → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈)))
831, 2, 82sylc 65 1 (𝜑 → ((𝑀 Σg 𝐹) ∈ 𝑈 ↔ ran 𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  c0 4352  {csn 4648  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643  Basecbs 17258  .rcmulr 17312   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384
This theorem is referenced by:  1arithidom  33530
  Copyright terms: Public domain W3C validator