Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem1 Structured version   Visualization version   GIF version

Theorem unitscyglem1 42196
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem1.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
unitscyglem1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑛,𝑥   𝑛,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)

Proof of Theorem unitscyglem1
Dummy variables 𝑖 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . . . . 8 (𝑛 = ((od‘𝐺)‘𝐴) → (𝑛 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
21eqeq1d 2739 . . . . . . 7 (𝑛 = ((od‘𝐺)‘𝐴) → ((𝑛 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
32rabbidv 3444 . . . . . 6 (𝑛 = ((od‘𝐺)‘𝐴) → {𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
43fveq2d 6910 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
5 id 22 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → 𝑛 = ((od‘𝐺)‘𝐴))
64, 5breq12d 5156 . . . 4 (𝑛 = ((od‘𝐺)‘𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴)))
7 unitscyglem1.5 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
8 unitscyglem1.3 . . . . 5 (𝜑𝐺 ∈ Grp)
9 unitscyglem1.4 . . . . 5 (𝜑𝐵 ∈ Fin)
10 unitscyglem1.6 . . . . 5 (𝜑𝐴𝐵)
11 unitscyglem1.1 . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2737 . . . . . 6 (od‘𝐺) = (od‘𝐺)
1311, 12odcl2 19583 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) ∈ ℕ)
148, 9, 10, 13syl3anc 1373 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ)
156, 7, 14rspcdva 3623 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴))
16 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
17 eqid 2737 . . . . . . 7 (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴))
1811, 12, 16, 17dfod2 19582 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
198, 10, 18syl2anc 584 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
208adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐺 ∈ Grp)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2210adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐴𝐵)
2311, 16, 20, 21, 22mulgcld 19114 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ 𝐵)
2423fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵)
25 frn 6743 . . . . . . . 8 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
2624, 25syl 17 . . . . . . 7 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
279, 26ssfid 9301 . . . . . 6 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin)
2827iftrued 4533 . . . . 5 (𝜑 → if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
2919, 28eqtrd 2777 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
30 eqid 2737 . . . . . 6 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}
31 fvexd 6921 . . . . . . 7 (𝜑 → (Base‘𝐺) ∈ V)
3211, 31eqeltrid 2845 . . . . . 6 (𝜑𝐵 ∈ V)
3330, 32rabexd 5340 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V)
34 ovexd 7466 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ V)
3534fmpttd 7135 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶V)
3635ffnd 6737 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ)
37 fvelrnb 6969 . . . . . . . . . 10 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3938biimpa 476 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦)
40 id 22 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦 → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
4140eqcomd 2743 . . . . . . . . . . . . 13 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
4241adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
43 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝜑)
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
4543, 44jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → (𝜑𝑤 ∈ ℤ))
46 eqidd 2738 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → 𝑖 = 𝑤)
4847oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → (𝑖 𝐴) = (𝑤 𝐴))
49 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
50 ovexd 7466 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ V)
5146, 48, 49, 50fvmptd 7023 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = (𝑤 𝐴))
52 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 𝐴) → (((od‘𝐺)‘𝐴) 𝑥) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
5352eqeq1d 2739 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑤 𝐴) → ((((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺)))
548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐺 ∈ Grp)
5510adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐴𝐵)
5611, 16, 54, 49, 55mulgcld 19114 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ 𝐵)
5714nnzd 12640 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
5949, 58, 553jca 1129 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵))
6011, 16mulgass 19129 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
6154, 59, 60syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
62 eqid 2737 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝐺) = (0g𝐺)
6311, 12, 16, 62odid 19556 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6455, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6564oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (𝑤 (0g𝐺)))
6611, 16, 62mulgz 19120 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
678, 66sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
6865, 67eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (0g𝐺))
6961, 68eqtr2d 2778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → (0g𝐺) = ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴))
7059simp2d 1144 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
7170, 49, 553jca 1129 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵))
7211, 16mulgassr 19130 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7354, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7469, 73eqtr2d 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺))
7553, 56, 74elrabd 3694 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7651, 75eqeltrd 2841 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7745, 76syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7877adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7942, 78eqeltrd 2841 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
80 nfv 1914 . . . . . . . . . . . . . 14 𝑤((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦
81 nfv 1914 . . . . . . . . . . . . . 14 𝑧((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦
82 fveqeq2 6915 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦))
8380, 81, 82cbvrexw 3307 . . . . . . . . . . . . 13 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8483biimpi 216 . . . . . . . . . . . 12 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8584adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8679, 85r19.29a 3162 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
8786ex 412 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8887adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8939, 88mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
9089ex 412 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9190ssrdv 3989 . . . . 5 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
92 hashss 14448 . . . . 5 (({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V ∧ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9333, 91, 92syl2anc 584 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9429, 93eqbrtrd 5165 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9515, 94jca 511 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})))
96 ssrab2 4080 . . . . . . 7 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵
9796a1i 11 . . . . . 6 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵)
989, 97ssfid 9301 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin)
99 hashcl 14395 . . . . 5 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
10098, 99syl 17 . . . 4 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
101100nn0red 12588 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℝ)
10214nnred 12281 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℝ)
103101, 102letri3d 11403 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴) ↔ ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))))
10495, 103mpbird 257 1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155   · cmul 11160  cle 11296  cn 12266  0cn0 12526  cz 12613  chash 14369  Basecbs 17247  0gc0g 17484  Grpcgrp 18951  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-od 19546
This theorem is referenced by:  unitscyglem2  42197
  Copyright terms: Public domain W3C validator