Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem1 Structured version   Visualization version   GIF version

Theorem unitscyglem1 42152
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem1.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
unitscyglem1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑛,𝑥   𝑛,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)

Proof of Theorem unitscyglem1
Dummy variables 𝑖 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . . 8 (𝑛 = ((od‘𝐺)‘𝐴) → (𝑛 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
21eqeq1d 2742 . . . . . . 7 (𝑛 = ((od‘𝐺)‘𝐴) → ((𝑛 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
32rabbidv 3451 . . . . . 6 (𝑛 = ((od‘𝐺)‘𝐴) → {𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
43fveq2d 6924 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
5 id 22 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → 𝑛 = ((od‘𝐺)‘𝐴))
64, 5breq12d 5179 . . . 4 (𝑛 = ((od‘𝐺)‘𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴)))
7 unitscyglem1.5 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
8 unitscyglem1.3 . . . . 5 (𝜑𝐺 ∈ Grp)
9 unitscyglem1.4 . . . . 5 (𝜑𝐵 ∈ Fin)
10 unitscyglem1.6 . . . . 5 (𝜑𝐴𝐵)
11 unitscyglem1.1 . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2740 . . . . . 6 (od‘𝐺) = (od‘𝐺)
1311, 12odcl2 19607 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) ∈ ℕ)
148, 9, 10, 13syl3anc 1371 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ)
156, 7, 14rspcdva 3636 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴))
16 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
17 eqid 2740 . . . . . . 7 (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴))
1811, 12, 16, 17dfod2 19606 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
198, 10, 18syl2anc 583 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
208adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐺 ∈ Grp)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2210adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐴𝐵)
2311, 16, 20, 21, 22mulgcld 19136 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ 𝐵)
2423fmpttd 7149 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵)
25 frn 6754 . . . . . . . 8 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
2624, 25syl 17 . . . . . . 7 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
279, 26ssfid 9329 . . . . . 6 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin)
2827iftrued 4556 . . . . 5 (𝜑 → if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
2919, 28eqtrd 2780 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
30 eqid 2740 . . . . . 6 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}
31 fvexd 6935 . . . . . . 7 (𝜑 → (Base‘𝐺) ∈ V)
3211, 31eqeltrid 2848 . . . . . 6 (𝜑𝐵 ∈ V)
3330, 32rabexd 5358 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V)
34 ovexd 7483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ V)
3534fmpttd 7149 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶V)
3635ffnd 6748 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ)
37 fvelrnb 6982 . . . . . . . . . 10 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3938biimpa 476 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦)
40 id 22 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦 → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
4140eqcomd 2746 . . . . . . . . . . . . 13 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
4241adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
43 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝜑)
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
4543, 44jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → (𝜑𝑤 ∈ ℤ))
46 eqidd 2741 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → 𝑖 = 𝑤)
4847oveq1d 7463 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → (𝑖 𝐴) = (𝑤 𝐴))
49 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
50 ovexd 7483 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ V)
5146, 48, 49, 50fvmptd 7036 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = (𝑤 𝐴))
52 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 𝐴) → (((od‘𝐺)‘𝐴) 𝑥) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
5352eqeq1d 2742 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑤 𝐴) → ((((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺)))
548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐺 ∈ Grp)
5510adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐴𝐵)
5611, 16, 54, 49, 55mulgcld 19136 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ 𝐵)
5714nnzd 12666 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
5949, 58, 553jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵))
6011, 16mulgass 19151 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
6154, 59, 60syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
62 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝐺) = (0g𝐺)
6311, 12, 16, 62odid 19580 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6455, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6564oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (𝑤 (0g𝐺)))
6611, 16, 62mulgz 19142 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
678, 66sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
6865, 67eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (0g𝐺))
6961, 68eqtr2d 2781 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → (0g𝐺) = ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴))
7059simp2d 1143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
7170, 49, 553jca 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵))
7211, 16mulgassr 19152 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7354, 71, 72syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7469, 73eqtr2d 2781 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺))
7553, 56, 74elrabd 3710 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7651, 75eqeltrd 2844 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7745, 76syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7877adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7942, 78eqeltrd 2844 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
80 nfv 1913 . . . . . . . . . . . . . 14 𝑤((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦
81 nfv 1913 . . . . . . . . . . . . . 14 𝑧((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦
82 fveqeq2 6929 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦))
8380, 81, 82cbvrexw 3313 . . . . . . . . . . . . 13 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8483biimpi 216 . . . . . . . . . . . 12 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8584adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8679, 85r19.29a 3168 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
8786ex 412 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8887adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8939, 88mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
9089ex 412 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9190ssrdv 4014 . . . . 5 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
92 hashss 14458 . . . . 5 (({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V ∧ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9333, 91, 92syl2anc 583 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9429, 93eqbrtrd 5188 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9515, 94jca 511 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})))
96 ssrab2 4103 . . . . . . 7 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵
9796a1i 11 . . . . . 6 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵)
989, 97ssfid 9329 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin)
99 hashcl 14405 . . . . 5 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
10098, 99syl 17 . . . 4 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
101100nn0red 12614 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℝ)
10214nnred 12308 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℝ)
103101, 102letri3d 11432 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴) ↔ ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))))
10495, 103mpbird 257 1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184   · cmul 11189  cle 11325  cn 12293  0cn0 12553  cz 12639  chash 14379  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-od 19570
This theorem is referenced by:  unitscyglem2  42153
  Copyright terms: Public domain W3C validator