Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem1 Structured version   Visualization version   GIF version

Theorem unitscyglem1 42190
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem1.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
unitscyglem1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑛,𝑥   𝑛,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)

Proof of Theorem unitscyglem1
Dummy variables 𝑖 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . . . . . 8 (𝑛 = ((od‘𝐺)‘𝐴) → (𝑛 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
21eqeq1d 2732 . . . . . . 7 (𝑛 = ((od‘𝐺)‘𝐴) → ((𝑛 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
32rabbidv 3416 . . . . . 6 (𝑛 = ((od‘𝐺)‘𝐴) → {𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
43fveq2d 6865 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
5 id 22 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → 𝑛 = ((od‘𝐺)‘𝐴))
64, 5breq12d 5123 . . . 4 (𝑛 = ((od‘𝐺)‘𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴)))
7 unitscyglem1.5 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
8 unitscyglem1.3 . . . . 5 (𝜑𝐺 ∈ Grp)
9 unitscyglem1.4 . . . . 5 (𝜑𝐵 ∈ Fin)
10 unitscyglem1.6 . . . . 5 (𝜑𝐴𝐵)
11 unitscyglem1.1 . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2730 . . . . . 6 (od‘𝐺) = (od‘𝐺)
1311, 12odcl2 19502 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) ∈ ℕ)
148, 9, 10, 13syl3anc 1373 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ)
156, 7, 14rspcdva 3592 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴))
16 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
17 eqid 2730 . . . . . . 7 (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴))
1811, 12, 16, 17dfod2 19501 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
198, 10, 18syl2anc 584 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
208adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐺 ∈ Grp)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2210adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐴𝐵)
2311, 16, 20, 21, 22mulgcld 19035 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ 𝐵)
2423fmpttd 7090 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵)
25 frn 6698 . . . . . . . 8 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
2624, 25syl 17 . . . . . . 7 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
279, 26ssfid 9219 . . . . . 6 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin)
2827iftrued 4499 . . . . 5 (𝜑 → if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
2919, 28eqtrd 2765 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
30 eqid 2730 . . . . . 6 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}
31 fvexd 6876 . . . . . . 7 (𝜑 → (Base‘𝐺) ∈ V)
3211, 31eqeltrid 2833 . . . . . 6 (𝜑𝐵 ∈ V)
3330, 32rabexd 5298 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V)
34 ovexd 7425 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ V)
3534fmpttd 7090 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶V)
3635ffnd 6692 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ)
37 fvelrnb 6924 . . . . . . . . . 10 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3938biimpa 476 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦)
40 id 22 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦 → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
4140eqcomd 2736 . . . . . . . . . . . . 13 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
4241adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
43 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝜑)
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
4543, 44jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → (𝜑𝑤 ∈ ℤ))
46 eqidd 2731 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → 𝑖 = 𝑤)
4847oveq1d 7405 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → (𝑖 𝐴) = (𝑤 𝐴))
49 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
50 ovexd 7425 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ V)
5146, 48, 49, 50fvmptd 6978 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = (𝑤 𝐴))
52 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 𝐴) → (((od‘𝐺)‘𝐴) 𝑥) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
5352eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑤 𝐴) → ((((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺)))
548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐺 ∈ Grp)
5510adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐴𝐵)
5611, 16, 54, 49, 55mulgcld 19035 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ 𝐵)
5714nnzd 12563 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
5949, 58, 553jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵))
6011, 16mulgass 19050 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
6154, 59, 60syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
62 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝐺) = (0g𝐺)
6311, 12, 16, 62odid 19475 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6455, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6564oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (𝑤 (0g𝐺)))
6611, 16, 62mulgz 19041 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
678, 66sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
6865, 67eqtrd 2765 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (0g𝐺))
6961, 68eqtr2d 2766 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → (0g𝐺) = ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴))
7059simp2d 1143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
7170, 49, 553jca 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵))
7211, 16mulgassr 19051 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7354, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7469, 73eqtr2d 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺))
7553, 56, 74elrabd 3664 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7651, 75eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7745, 76syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7877adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7942, 78eqeltrd 2829 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
80 nfv 1914 . . . . . . . . . . . . . 14 𝑤((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦
81 nfv 1914 . . . . . . . . . . . . . 14 𝑧((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦
82 fveqeq2 6870 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦))
8380, 81, 82cbvrexw 3283 . . . . . . . . . . . . 13 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8483biimpi 216 . . . . . . . . . . . 12 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8584adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8679, 85r19.29a 3142 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
8786ex 412 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8887adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8939, 88mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
9089ex 412 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9190ssrdv 3955 . . . . 5 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
92 hashss 14381 . . . . 5 (({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V ∧ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9333, 91, 92syl2anc 584 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9429, 93eqbrtrd 5132 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9515, 94jca 511 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})))
96 ssrab2 4046 . . . . . . 7 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵
9796a1i 11 . . . . . 6 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵)
989, 97ssfid 9219 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin)
99 hashcl 14328 . . . . 5 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
10098, 99syl 17 . . . 4 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
101100nn0red 12511 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℝ)
10214nnred 12208 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℝ)
103101, 102letri3d 11323 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴) ↔ ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))))
10495, 103mpbird 257 1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075   · cmul 11080  cle 11216  cn 12193  0cn0 12449  cz 12536  chash 14302  Basecbs 17186  0gc0g 17409  Grpcgrp 18872  .gcmg 19006  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-od 19465
This theorem is referenced by:  unitscyglem2  42191
  Copyright terms: Public domain W3C validator