Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem1 Structured version   Visualization version   GIF version

Theorem unitscyglem1 42228
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem1.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
unitscyglem1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑛,𝑥   𝑛,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)

Proof of Theorem unitscyglem1
Dummy variables 𝑖 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7348 . . . . . . . 8 (𝑛 = ((od‘𝐺)‘𝐴) → (𝑛 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
21eqeq1d 2733 . . . . . . 7 (𝑛 = ((od‘𝐺)‘𝐴) → ((𝑛 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
32rabbidv 3402 . . . . . 6 (𝑛 = ((od‘𝐺)‘𝐴) → {𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
43fveq2d 6821 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
5 id 22 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → 𝑛 = ((od‘𝐺)‘𝐴))
64, 5breq12d 5099 . . . 4 (𝑛 = ((od‘𝐺)‘𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴)))
7 unitscyglem1.5 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
8 unitscyglem1.3 . . . . 5 (𝜑𝐺 ∈ Grp)
9 unitscyglem1.4 . . . . 5 (𝜑𝐵 ∈ Fin)
10 unitscyglem1.6 . . . . 5 (𝜑𝐴𝐵)
11 unitscyglem1.1 . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2731 . . . . . 6 (od‘𝐺) = (od‘𝐺)
1311, 12odcl2 19472 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) ∈ ℕ)
148, 9, 10, 13syl3anc 1373 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ)
156, 7, 14rspcdva 3573 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴))
16 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
17 eqid 2731 . . . . . . 7 (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴))
1811, 12, 16, 17dfod2 19471 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
198, 10, 18syl2anc 584 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
208adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐺 ∈ Grp)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2210adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐴𝐵)
2311, 16, 20, 21, 22mulgcld 19004 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ 𝐵)
2423fmpttd 7043 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵)
25 frn 6653 . . . . . . . 8 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
2624, 25syl 17 . . . . . . 7 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
279, 26ssfid 9148 . . . . . 6 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin)
2827iftrued 4478 . . . . 5 (𝜑 → if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
2919, 28eqtrd 2766 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
30 eqid 2731 . . . . . 6 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}
31 fvexd 6832 . . . . . . 7 (𝜑 → (Base‘𝐺) ∈ V)
3211, 31eqeltrid 2835 . . . . . 6 (𝜑𝐵 ∈ V)
3330, 32rabexd 5273 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V)
34 ovexd 7376 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ V)
3534fmpttd 7043 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶V)
3635ffnd 6647 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ)
37 fvelrnb 6877 . . . . . . . . . 10 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3938biimpa 476 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦)
40 id 22 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦 → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
4140eqcomd 2737 . . . . . . . . . . . . 13 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
4241adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
43 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝜑)
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
4543, 44jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → (𝜑𝑤 ∈ ℤ))
46 eqidd 2732 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → 𝑖 = 𝑤)
4847oveq1d 7356 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → (𝑖 𝐴) = (𝑤 𝐴))
49 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
50 ovexd 7376 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ V)
5146, 48, 49, 50fvmptd 6931 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = (𝑤 𝐴))
52 oveq2 7349 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 𝐴) → (((od‘𝐺)‘𝐴) 𝑥) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
5352eqeq1d 2733 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑤 𝐴) → ((((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺)))
548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐺 ∈ Grp)
5510adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐴𝐵)
5611, 16, 54, 49, 55mulgcld 19004 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ 𝐵)
5714nnzd 12490 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
5949, 58, 553jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵))
6011, 16mulgass 19019 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
6154, 59, 60syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
62 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝐺) = (0g𝐺)
6311, 12, 16, 62odid 19445 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6455, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6564oveq2d 7357 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (𝑤 (0g𝐺)))
6611, 16, 62mulgz 19010 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
678, 66sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
6865, 67eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (0g𝐺))
6961, 68eqtr2d 2767 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → (0g𝐺) = ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴))
7059simp2d 1143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
7170, 49, 553jca 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵))
7211, 16mulgassr 19020 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7354, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7469, 73eqtr2d 2767 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺))
7553, 56, 74elrabd 3644 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7651, 75eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7745, 76syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7877adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7942, 78eqeltrd 2831 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
80 nfv 1915 . . . . . . . . . . . . . 14 𝑤((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦
81 nfv 1915 . . . . . . . . . . . . . 14 𝑧((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦
82 fveqeq2 6826 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦))
8380, 81, 82cbvrexw 3275 . . . . . . . . . . . . 13 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8483biimpi 216 . . . . . . . . . . . 12 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8584adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8679, 85r19.29a 3140 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
8786ex 412 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8887adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8939, 88mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
9089ex 412 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9190ssrdv 3935 . . . . 5 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
92 hashss 14311 . . . . 5 (({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V ∧ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9333, 91, 92syl2anc 584 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9429, 93eqbrtrd 5108 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9515, 94jca 511 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})))
96 ssrab2 4025 . . . . . . 7 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵
9796a1i 11 . . . . . 6 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵)
989, 97ssfid 9148 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin)
99 hashcl 14258 . . . . 5 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
10098, 99syl 17 . . . 4 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
101100nn0red 12438 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℝ)
10214nnred 12135 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℝ)
103101, 102letri3d 11250 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴) ↔ ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))))
10495, 103mpbird 257 1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  ifcif 4470   class class class wbr 5086  cmpt 5167  ran crn 5612   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  0cc0 11001   · cmul 11006  cle 11142  cn 12120  0cn0 12376  cz 12463  chash 14232  Basecbs 17115  0gc0g 17338  Grpcgrp 18841  .gcmg 18975  odcod 19431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-od 19435
This theorem is referenced by:  unitscyglem2  42229
  Copyright terms: Public domain W3C validator