Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem1 Structured version   Visualization version   GIF version

Theorem unitscyglem1 42156
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem1.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
unitscyglem1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑛,𝑥   𝑛,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)

Proof of Theorem unitscyglem1
Dummy variables 𝑖 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . . . . . 8 (𝑛 = ((od‘𝐺)‘𝐴) → (𝑛 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
21eqeq1d 2731 . . . . . . 7 (𝑛 = ((od‘𝐺)‘𝐴) → ((𝑛 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
32rabbidv 3410 . . . . . 6 (𝑛 = ((od‘𝐺)‘𝐴) → {𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
43fveq2d 6844 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
5 id 22 . . . . 5 (𝑛 = ((od‘𝐺)‘𝐴) → 𝑛 = ((od‘𝐺)‘𝐴))
64, 5breq12d 5115 . . . 4 (𝑛 = ((od‘𝐺)‘𝐴) → ((♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴)))
7 unitscyglem1.5 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
8 unitscyglem1.3 . . . . 5 (𝜑𝐺 ∈ Grp)
9 unitscyglem1.4 . . . . 5 (𝜑𝐵 ∈ Fin)
10 unitscyglem1.6 . . . . 5 (𝜑𝐴𝐵)
11 unitscyglem1.1 . . . . . 6 𝐵 = (Base‘𝐺)
12 eqid 2729 . . . . . 6 (od‘𝐺) = (od‘𝐺)
1311, 12odcl2 19471 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) ∈ ℕ)
148, 9, 10, 13syl3anc 1373 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ)
156, 7, 14rspcdva 3586 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴))
16 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
17 eqid 2729 . . . . . . 7 (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴))
1811, 12, 16, 17dfod2 19470 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
198, 10, 18syl2anc 584 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0))
208adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐺 ∈ Grp)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2210adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℤ) → 𝐴𝐵)
2311, 16, 20, 21, 22mulgcld 19004 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ 𝐵)
2423fmpttd 7069 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵)
25 frn 6677 . . . . . . . 8 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶𝐵 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
2624, 25syl 17 . . . . . . 7 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ 𝐵)
279, 26ssfid 9188 . . . . . 6 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin)
2827iftrued 4492 . . . . 5 (𝜑 → if(ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ∈ Fin, (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))), 0) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
2919, 28eqtrd 2764 . . . 4 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))))
30 eqid 2729 . . . . . 6 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}
31 fvexd 6855 . . . . . . 7 (𝜑 → (Base‘𝐺) ∈ V)
3211, 31eqeltrid 2832 . . . . . 6 (𝜑𝐵 ∈ V)
3330, 32rabexd 5290 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V)
34 ovexd 7404 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝑖 𝐴) ∈ V)
3534fmpttd 7069 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)):ℤ⟶V)
3635ffnd 6671 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ)
37 fvelrnb 6903 . . . . . . . . . 10 ((𝑖 ∈ ℤ ↦ (𝑖 𝐴)) Fn ℤ → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ↔ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦))
3938biimpa 476 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦)
40 id 22 . . . . . . . . . . . . . 14 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦 → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
4140eqcomd 2735 . . . . . . . . . . . . 13 (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
4241adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 = ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤))
43 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝜑)
44 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
4543, 44jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → (𝜑𝑤 ∈ ℤ))
46 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) = (𝑖 ∈ ℤ ↦ (𝑖 𝐴)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → 𝑖 = 𝑤)
4847oveq1d 7384 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℤ) ∧ 𝑖 = 𝑤) → (𝑖 𝐴) = (𝑤 𝐴))
49 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
50 ovexd 7404 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ V)
5146, 48, 49, 50fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = (𝑤 𝐴))
52 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑤 𝐴) → (((od‘𝐺)‘𝐴) 𝑥) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
5352eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑤 𝐴) → ((((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺)))
548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐺 ∈ Grp)
5510adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → 𝐴𝐵)
5611, 16, 54, 49, 55mulgcld 19004 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ 𝐵)
5714nnzd 12532 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
5949, 58, 553jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵))
6011, 16mulgass 19019 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ (𝑤 ∈ ℤ ∧ ((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
6154, 59, 60syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (𝑤 (((od‘𝐺)‘𝐴) 𝐴)))
62 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝐺) = (0g𝐺)
6311, 12, 16, 62odid 19444 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6455, 63syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) 𝐴) = (0g𝐺))
6564oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (𝑤 (0g𝐺)))
6611, 16, 62mulgz 19010 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
678, 66sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → (𝑤 (0g𝐺)) = (0g𝐺))
6865, 67eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (𝑤 (((od‘𝐺)‘𝐴) 𝐴)) = (0g𝐺))
6961, 68eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → (0g𝐺) = ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴))
7059simp2d 1143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ℤ) → ((od‘𝐺)‘𝐴) ∈ ℤ)
7170, 49, 553jca 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵))
7211, 16mulgassr 19020 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (((od‘𝐺)‘𝐴) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝐴𝐵)) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7354, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℤ) → ((𝑤 · ((od‘𝐺)‘𝐴)) 𝐴) = (((od‘𝐺)‘𝐴) (𝑤 𝐴)))
7469, 73eqtr2d 2765 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℤ) → (((od‘𝐺)‘𝐴) (𝑤 𝐴)) = (0g𝐺))
7553, 56, 74elrabd 3658 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℤ) → (𝑤 𝐴) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7651, 75eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7745, 76syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7877adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
7942, 78eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) ∧ 𝑤 ∈ ℤ) ∧ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
80 nfv 1914 . . . . . . . . . . . . . 14 𝑤((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦
81 nfv 1914 . . . . . . . . . . . . . 14 𝑧((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦
82 fveqeq2 6849 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦))
8380, 81, 82cbvrexw 3279 . . . . . . . . . . . . 13 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 ↔ ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8483biimpi 216 . . . . . . . . . . . 12 (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦 → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8584adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → ∃𝑤 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑤) = 𝑦)
8679, 85r19.29a 3141 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
8786ex 412 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8887adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → (∃𝑧 ∈ ℤ ((𝑖 ∈ ℤ ↦ (𝑖 𝐴))‘𝑧) = 𝑦𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
8939, 88mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
9089ex 412 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) → 𝑦 ∈ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9190ssrdv 3949 . . . . 5 (𝜑 → ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
92 hashss 14350 . . . . 5 (({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ V ∧ ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴)) ⊆ {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9333, 91, 92syl2anc 584 . . . 4 (𝜑 → (♯‘ran (𝑖 ∈ ℤ ↦ (𝑖 𝐴))) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9429, 93eqbrtrd 5124 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
9515, 94jca 511 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})))
96 ssrab2 4039 . . . . . . 7 {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵
9796a1i 11 . . . . . 6 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ⊆ 𝐵)
989, 97ssfid 9188 . . . . 5 (𝜑 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin)
99 hashcl 14297 . . . . 5 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)} ∈ Fin → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
10098, 99syl 17 . . . 4 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℕ0)
101100nn0red 12480 . . 3 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ∈ ℝ)
10214nnred 12177 . . 3 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℝ)
103101, 102letri3d 11292 . 2 (𝜑 → ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴) ↔ ((♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) ≤ ((od‘𝐺)‘𝐴) ∧ ((od‘𝐺)‘𝐴) ≤ (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))))
10495, 103mpbird 257 1 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044   · cmul 11049  cle 11185  cn 12162  0cn0 12418  cz 12505  chash 14271  Basecbs 17155  0gc0g 17378  Grpcgrp 18841  .gcmg 18975  odcod 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-od 19434
This theorem is referenced by:  unitscyglem2  42157
  Copyright terms: Public domain W3C validator