![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmatring | Structured version Visualization version GIF version |
Description: The set of polynomial matrices over a ring is a ring. (Contributed by AV, 6-Nov-2019.) |
Ref | Expression |
---|---|
pmatring.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmatring.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
Ref | Expression |
---|---|
pmatring | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 20025 | . 2 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | pmatring.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | 3 | matring 20664 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ Ring) |
5 | 2, 4 | sylan2 586 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6137 (class class class)co 6924 Fincfn 8243 Ringcrg 18945 Poly1cpl1 19954 Mat cmat 20628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-ofr 7177 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-fzo 12790 df-seq 13125 df-hash 13442 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-hom 16373 df-cco 16374 df-0g 16499 df-gsum 16500 df-prds 16505 df-pws 16507 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-submnd 17733 df-grp 17823 df-minusg 17824 df-sbg 17825 df-mulg 17939 df-subg 17986 df-ghm 18053 df-cntz 18144 df-cmn 18592 df-abl 18593 df-mgp 18888 df-ur 18900 df-ring 18947 df-subrg 19181 df-lmod 19268 df-lss 19336 df-sra 19580 df-rgmod 19581 df-psr 19764 df-mpl 19766 df-opsr 19768 df-psr1 19957 df-ply1 19959 df-dsmm 20486 df-frlm 20501 df-mamu 20605 df-mat 20629 |
This theorem is referenced by: 1pmatscmul 20925 1elcpmat 20938 cpmatacl 20939 cpmatinvcl 20940 cpmatmcl 20942 cpmatsubgpmat 20943 cpmatsrgpmat 20944 mat2pmatghm 20953 mat2pmat1 20955 decpmatid 20993 decpmatmullem 20994 decpmatmul 20995 decpmatmulsumfsupp 20996 pmatcollpwfi 21005 pmatcollpw3fi1lem1 21009 idpm2idmp 21024 pm2mpghm 21039 pm2mpmhmlem1 21041 pm2mpmhmlem2 21042 pm2mpmhm 21043 pm2mprhm 21044 pm2mprngiso 21045 pm2mp 21048 chmatcl 21051 chmatval 21052 chpdmatlem0 21060 chpdmatlem1 21061 chpdmatlem2 21062 chpdmatlem3 21063 chmaidscmat 21071 chfacfisf 21077 chfacfscmulgsum 21083 chfacfpmmulcl 21084 chfacfpmmul0 21085 chfacfpmmulgsum 21087 chfacfpmmulgsum2 21088 cayhamlem1 21089 cpmadugsumlemF 21099 cpmadugsumfi 21100 cpmidgsum2 21102 cayhamlem4 21111 |
Copyright terms: Public domain | W3C validator |