![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptlimc | Structured version Visualization version GIF version |
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnmptlimc.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) |
cnmptlimc.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
cnmptlimc.1 | ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
cnmptlimc | ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑋) = (𝑥 ∈ 𝐴 ↦ 𝑋) | |
2 | cnmptlimc.1 | . . 3 ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) | |
3 | cnmptlimc.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 2 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∈ 𝐷 ↔ 𝑌 ∈ 𝐷)) |
5 | cnmptlimc.f | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) | |
6 | cncff 24634 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷) → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) |
8 | 1 | fmpt 7112 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐷) |
10 | 4, 9, 3 | rspcdva 3614 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
11 | 1, 2, 3, 10 | fvmptd3 7022 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑋)‘𝐵) = 𝑌) |
12 | 5, 3 | cnlimci 25639 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑋)‘𝐵) ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
13 | 11, 12 | eqeltrrd 2833 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7412 –cn→ccncf 24617 limℂ climc 25612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-rest 17373 df-topn 17374 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cn 22952 df-cnp 22953 df-xms 24047 df-ms 24048 df-cncf 24619 df-limc 25616 |
This theorem is referenced by: dvidlem 25665 dvcnp2 25670 dvmulbr 25689 dvrec 25705 lhop1lem 25763 lhop2 25765 taylthlem2 26119 gg-dvcnp2 35461 gg-dvmulbr 35462 fourierdlem62 45184 fourierdlem73 45195 fourierdlem76 45198 |
Copyright terms: Public domain | W3C validator |