MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptlimc Structured version   Visualization version   GIF version

Theorem cnmptlimc 25054
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnmptlimc.f (𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))
cnmptlimc.b (𝜑𝐵𝐴)
cnmptlimc.1 (𝑥 = 𝐵𝑋 = 𝑌)
Assertion
Ref Expression
cnmptlimc (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑋(𝑥)

Proof of Theorem cnmptlimc
StepHypRef Expression
1 eqid 2738 . . 3 (𝑥𝐴𝑋) = (𝑥𝐴𝑋)
2 cnmptlimc.1 . . 3 (𝑥 = 𝐵𝑋 = 𝑌)
3 cnmptlimc.b . . 3 (𝜑𝐵𝐴)
42eleq1d 2823 . . . 4 (𝑥 = 𝐵 → (𝑋𝐷𝑌𝐷))
5 cnmptlimc.f . . . . . 6 (𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))
6 cncff 24056 . . . . . 6 ((𝑥𝐴𝑋) ∈ (𝐴cn𝐷) → (𝑥𝐴𝑋):𝐴𝐷)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝑋):𝐴𝐷)
81fmpt 6984 . . . . 5 (∀𝑥𝐴 𝑋𝐷 ↔ (𝑥𝐴𝑋):𝐴𝐷)
97, 8sylibr 233 . . . 4 (𝜑 → ∀𝑥𝐴 𝑋𝐷)
104, 9, 3rspcdva 3562 . . 3 (𝜑𝑌𝐷)
111, 2, 3, 10fvmptd3 6898 . 2 (𝜑 → ((𝑥𝐴𝑋)‘𝐵) = 𝑌)
125, 3cnlimci 25053 . 2 (𝜑 → ((𝑥𝐴𝑋)‘𝐵) ∈ ((𝑥𝐴𝑋) lim 𝐵))
1311, 12eqeltrrd 2840 1 (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cnccncf 24039   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-xms 23473  df-ms 23474  df-cncf 24041  df-limc 25030
This theorem is referenced by:  dvidlem  25079  dvcnp2  25084  dvmulbr  25103  dvrec  25119  lhop1lem  25177  lhop2  25179  taylthlem2  25533  fourierdlem62  43709  fourierdlem73  43720  fourierdlem76  43723
  Copyright terms: Public domain W3C validator