MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptlimc Structured version   Visualization version   GIF version

Theorem cnmptlimc 25813
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnmptlimc.f (𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))
cnmptlimc.b (𝜑𝐵𝐴)
cnmptlimc.1 (𝑥 = 𝐵𝑋 = 𝑌)
Assertion
Ref Expression
cnmptlimc (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑋(𝑥)

Proof of Theorem cnmptlimc
StepHypRef Expression
1 eqid 2731 . . 3 (𝑥𝐴𝑋) = (𝑥𝐴𝑋)
2 cnmptlimc.1 . . 3 (𝑥 = 𝐵𝑋 = 𝑌)
3 cnmptlimc.b . . 3 (𝜑𝐵𝐴)
42eleq1d 2816 . . . 4 (𝑥 = 𝐵 → (𝑋𝐷𝑌𝐷))
5 cnmptlimc.f . . . . . 6 (𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))
6 cncff 24808 . . . . . 6 ((𝑥𝐴𝑋) ∈ (𝐴cn𝐷) → (𝑥𝐴𝑋):𝐴𝐷)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝑋):𝐴𝐷)
81fmpt 7038 . . . . 5 (∀𝑥𝐴 𝑋𝐷 ↔ (𝑥𝐴𝑋):𝐴𝐷)
97, 8sylibr 234 . . . 4 (𝜑 → ∀𝑥𝐴 𝑋𝐷)
104, 9, 3rspcdva 3573 . . 3 (𝜑𝑌𝐷)
111, 2, 3, 10fvmptd3 6947 . 2 (𝜑 → ((𝑥𝐴𝑋)‘𝐵) = 𝑌)
125, 3cnlimci 25812 . 2 (𝜑 → ((𝑥𝐴𝑋)‘𝐵) ∈ ((𝑥𝐴𝑋) lim 𝐵))
1311, 12eqeltrrd 2832 1 (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  cnccncf 24791   lim climc 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-rest 17321  df-topn 17322  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cn 23137  df-cnp 23138  df-xms 24230  df-ms 24231  df-cncf 24793  df-limc 25789
This theorem is referenced by:  dvidlem  25838  dvcnp2  25843  dvcnp2OLD  25844  dvmulbr  25863  dvmulbrOLD  25864  dvrec  25881  lhop1lem  25940  lhop2  25942  taylthlem2  26304  taylthlem2OLD  26305  fourierdlem62  46206  fourierdlem73  46217  fourierdlem76  46220
  Copyright terms: Public domain W3C validator