![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptlimc | Structured version Visualization version GIF version |
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnmptlimc.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) |
cnmptlimc.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
cnmptlimc.1 | ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
cnmptlimc | ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑋) = (𝑥 ∈ 𝐴 ↦ 𝑋) | |
2 | cnmptlimc.1 | . . 3 ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑌) | |
3 | cnmptlimc.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 2 | eleq1d 2844 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∈ 𝐷 ↔ 𝑌 ∈ 𝐷)) |
5 | cnmptlimc.f | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷)) | |
6 | cncff 23108 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑋) ∈ (𝐴–cn→𝐷) → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) |
8 | 1 | fmpt 6646 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐷) |
9 | 7, 8 | sylibr 226 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐷) |
10 | 4, 9, 3 | rspcdva 3517 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
11 | 1, 2, 3, 10 | fvmptd3 6566 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑋)‘𝐵) = 𝑌) |
12 | 5, 3 | cnlimci 24094 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑋)‘𝐵) ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
13 | 11, 12 | eqeltrrd 2860 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑋) limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ↦ cmpt 4967 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 –cn→ccncf 23091 limℂ climc 24067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fi 8607 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-fz 12648 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-plusg 16355 df-mulr 16356 df-starv 16357 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-rest 16473 df-topn 16474 df-topgen 16494 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cn 21443 df-cnp 21444 df-xms 22537 df-ms 22538 df-cncf 23093 df-limc 24071 |
This theorem is referenced by: dvidlem 24120 dvcnp2 24124 dvmulbr 24143 dvrec 24159 lhop1lem 24217 lhop2 24219 taylthlem2 24569 fourierdlem62 41322 fourierdlem73 41333 fourierdlem76 41336 |
Copyright terms: Public domain | W3C validator |