![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2cpmf1o | Structured version Visualization version GIF version |
Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) |
Ref | Expression |
---|---|
m2cpmfo.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
m2cpmfo.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
m2cpmfo.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpmfo.k | ⊢ 𝐾 = (Base‘𝐴) |
Ref | Expression |
---|---|
m2cpmf1o | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–1-1-onto→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpmfo.s | . . 3 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | m2cpmfo.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
3 | m2cpmfo.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | m2cpmfo.k | . . 3 ⊢ 𝐾 = (Base‘𝐴) | |
5 | 1, 2, 3, 4 | m2cpmf1 22555 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–1-1→𝑆) |
6 | 1, 2, 3, 4 | m2cpmfo 22568 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–onto→𝑆) |
7 | df-f1o 6540 | . 2 ⊢ (𝑇:𝐾–1-1-onto→𝑆 ↔ (𝑇:𝐾–1-1→𝑆 ∧ 𝑇:𝐾–onto→𝑆)) | |
8 | 5, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾–1-1-onto→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 –1-1→wf1 6530 –onto→wfo 6531 –1-1-onto→wf1o 6532 ‘cfv 6533 (class class class)co 7401 Fincfn 8934 Basecbs 17140 Ringcrg 20123 Mat cmat 22217 ConstPolyMat ccpmat 22515 matToPolyMat cmat2pmat 22516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18983 df-subg 19035 df-ghm 19124 df-cntz 19218 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-srg 20077 df-ring 20125 df-subrng 20431 df-subrg 20456 df-lmod 20693 df-lss 20764 df-sra 21006 df-rgmod 21007 df-dsmm 21587 df-frlm 21602 df-ascl 21710 df-psr 21762 df-mvr 21763 df-mpl 21764 df-opsr 21766 df-psr1 22013 df-vr1 22014 df-ply1 22015 df-coe1 22016 df-mat 22218 df-cpmat 22518 df-mat2pmat 22519 df-cpmat2mat 22520 |
This theorem is referenced by: m2cpmrngiso 22570 |
Copyright terms: Public domain | W3C validator |