Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1tmle | Structured version Visualization version GIF version |
Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
deg1tm.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
deg1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
deg1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
deg1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
deg1tm.e | ⊢ ↑ = (.g‘𝑁) |
Ref | Expression |
---|---|
deg1tmle | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | deg1tm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | deg1tm.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | deg1tm.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
5 | deg1tm.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | deg1tm.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | deg1tm.e | . . . . 5 ⊢ ↑ = (.g‘𝑁) | |
8 | simpl1 1189 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝑅 ∈ Ring) | |
9 | simpl2 1190 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐶 ∈ 𝐾) | |
10 | simpl3 1191 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ∈ ℕ0) | |
11 | simprl 767 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝑥 ∈ ℕ0) | |
12 | 10 | nn0red 12277 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ∈ ℝ) |
13 | simprr 769 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 < 𝑥) | |
14 | 12, 13 | ltned 11094 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ≠ 𝑥) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14 | coe1tmfv2 21427 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)) |
16 | 15 | expr 456 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅))) |
17 | 16 | ralrimiva 3109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅))) |
18 | eqid 2739 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
19 | 2, 3, 4, 5, 6, 7, 18 | ply1tmcl 21424 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃)) |
20 | nn0re 12225 | . . . . 5 ⊢ (𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ) | |
21 | 20 | rexrd 11009 | . . . 4 ⊢ (𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ*) |
22 | 21 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℝ*) |
23 | deg1tm.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
24 | eqid 2739 | . . . 4 ⊢ (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) | |
25 | 23, 3, 18, 1, 24 | deg1leb 25241 | . . 3 ⊢ (((𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃) ∧ 𝐹 ∈ ℝ*) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ↔ ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)))) |
26 | 19, 22, 25 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ↔ ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)))) |
27 | 17, 26 | mpbird 256 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 ℕ0cn0 12216 Basecbs 16893 ·𝑠 cvsca 16947 0gc0g 17131 .gcmg 18681 mulGrpcmgp 19701 Ringcrg 19764 var1cv1 21328 Poly1cpl1 21329 coe1cco1 21330 deg1 cdg1 25197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-subrg 20003 df-lmod 20106 df-lss 20175 df-cnfld 20579 df-psr 21093 df-mvr 21094 df-mpl 21095 df-opsr 21097 df-psr1 21332 df-vr1 21333 df-ply1 21334 df-coe1 21335 df-mdeg 25198 df-deg1 25199 |
This theorem is referenced by: deg1tm 25264 deg1pwle 25265 ply1divex 25282 |
Copyright terms: Public domain | W3C validator |