Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmqusspan Structured version   Visualization version   GIF version

Theorem rhmqusspan 42167
Description: Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025.)
Hypotheses
Ref Expression
rhmqusspan.1 0 = (0g𝐻)
rhmqusspan.2 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusspan.3 𝐾 = (𝐹 “ { 0 })
rhmqusspan.4 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusspan.5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusspan.6 (𝜑𝐺 ∈ CRing)
rhmqusspan.7 𝑁 = ((RSpan‘𝐺)‘{𝑋})
rhmqusspan.8 (𝜑𝑋 ∈ (Base‘𝐺))
rhmqusspan.9 (𝜑 → (𝐹𝑋) = 0 )
Assertion
Ref Expression
rhmqusspan (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑔,𝑞
Allowed substitution hints:   𝑄(𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐽(𝑔)   𝐾(𝑔)   𝑁(𝑔)   𝑋(𝑔,𝑞)   0 (𝑔,𝑞)

Proof of Theorem rhmqusspan
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmqusspan.1 . . 3 0 = (0g𝐻)
2 rhmqusspan.2 . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
3 rhmqusspan.3 . . 3 𝐾 = (𝐹 “ { 0 })
4 rhmqusspan.4 . . 3 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
5 rhmqusspan.5 . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
6 rhmqusspan.6 . . 3 (𝜑𝐺 ∈ CRing)
7 rhmqusspan.7 . . . 4 𝑁 = ((RSpan‘𝐺)‘{𝑋})
86crngringd 20264 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Ring)
9 rhmqusspan.8 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ (Base‘𝐺))
10 eqid 2735 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2735 . . . . . . . . . . . . . . 15 (RSpan‘𝐺) = (RSpan‘𝐺)
12 eqid 2735 . . . . . . . . . . . . . . 15 (∥r𝐺) = (∥r𝐺)
1310, 11, 12rspsn 21361 . . . . . . . . . . . . . 14 ((𝐺 ∈ Ring ∧ 𝑋 ∈ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
148, 9, 13syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
1514eleq2d 2825 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) ↔ 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1615biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1716imp 406 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦})
18 vex 3482 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ V)
20 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑋(∥r𝐺)𝑦𝑋(∥r𝐺)𝑥))
2120elabg 3677 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} ↔ 𝑋(∥r𝐺)𝑥))
2221biimpd 229 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2423imp 406 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → 𝑋(∥r𝐺)𝑥)
25 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (.r𝐺) = (.r𝐺)
2610, 12, 25dvdsr 20379 . . . . . . . . . . . . . . . . . 18 (𝑋(∥r𝐺)𝑥 ↔ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2726biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑋(∥r𝐺)𝑥 → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2827adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
29 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹‘(𝑧(.r𝐺)𝑋)) = (𝐹𝑥))
3029eqcomd 2741 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
3130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
322ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Base‘𝐺))
349ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑋 ∈ (Base‘𝐺))
35 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝐻) = (.r𝐻)
3610, 25, 35rhmmul 20503 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
3732, 33, 34, 36syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
38 rhmqusspan.9 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑋) = 0 )
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑋) = 0 )
4039oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = ((𝐹𝑧)(.r𝐻) 0 ))
41 rhmrcl2 20494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
42 ringsrg 20311 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐻 ∈ Ring → 𝐻 ∈ SRing)
4332, 41, 423syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐻 ∈ SRing)
44 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐻) = (Base‘𝐻)
4510, 44rhmf 20502 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
462, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4847ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑧) ∈ (Base‘𝐻))
4944, 35, 1srgrz 20225 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻 ∈ SRing ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5043, 48, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5140, 50eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = 0 )
5237, 51eqtrd 2775 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5431, 53eqtrd 2775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 )
55 nfv 1912 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝑦(.r𝐺)𝑋) = 𝑥
56 nfv 1912 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑧(.r𝐺)𝑋) = 𝑥
57 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (𝑦(.r𝐺)𝑋) = (𝑧(.r𝐺)𝑋))
5857eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑦(.r𝐺)𝑋) = 𝑥 ↔ (𝑧(.r𝐺)𝑋) = 𝑥))
5955, 56, 58cbvrexw 3305 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 ↔ ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6261adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6354, 62r19.29a 3160 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → (𝐹𝑥) = 0 )
6463ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6564adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6628, 65mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑋(∥r𝐺)𝑥) → (𝐹𝑥) = 0 )
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6924, 68mpd 15 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝐹𝑥) = 0 )
7069ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7170adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7217, 71mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) = 0 )
73 fvexd 6922 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ V)
74 elsng 4645 . . . . . . . . . 10 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7672, 75mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ { 0 })
7746ffund 6741 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7877adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → Fun 𝐹)
79 eqid 2735 . . . . . . . . . . . . . 14 (LIdeal‘𝐺) = (LIdeal‘𝐺)
8079, 10lidl1 21261 . . . . . . . . . . . . 13 (𝐺 ∈ Ring → (Base‘𝐺) ∈ (LIdeal‘𝐺))
818, 80syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐺) ∈ (LIdeal‘𝐺))
829snssd 4814 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (Base‘𝐺))
8311, 79rspssp 21267 . . . . . . . . . . . 12 ((𝐺 ∈ Ring ∧ (Base‘𝐺) ∈ (LIdeal‘𝐺) ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
848, 81, 82, 83syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
8584sselda 3995 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (Base‘𝐺))
86 fdm 6746 . . . . . . . . . . . 12 (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → dom 𝐹 = (Base‘𝐺))
8746, 86syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝐺))
8887adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → dom 𝐹 = (Base‘𝐺))
8985, 88eleqtrrd 2842 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ dom 𝐹)
90 fvimacnv 7073 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9178, 89, 90syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9276, 91mpbid 232 . . . . . . 7 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (𝐹 “ { 0 }))
9392ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ (𝐹 “ { 0 })))
9493ssrdv 4001 . . . . 5 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (𝐹 “ { 0 }))
953eqcomi 2744 . . . . 5 (𝐹 “ { 0 }) = 𝐾
9694, 95sseqtrdi 4046 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ 𝐾)
977, 96eqsstrid 4044 . . 3 (𝜑𝑁𝐾)
9811, 10, 79rspcl 21263 . . . . 5 ((𝐺 ∈ Ring ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
998, 82, 98syl2anc 584 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
1007, 99eqeltrid 2843 . . 3 (𝜑𝑁 ∈ (LIdeal‘𝐺))
1011, 2, 3, 4, 5, 6, 97, 100rhmqusnsg 21313 . 2 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
1022adantr 480 . . . . 5 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
103 rhmghm 20501 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
104102, 103syl 17 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10597adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁𝐾)
106 lidlnsg 21276 . . . . . 6 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
1078, 100, 106syl2anc 584 . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
108107adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
109 simpr 484 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑔 ∈ (Base‘𝐺))
1101, 104, 3, 4, 5, 105, 108, 109ghmqusnsglem1 19311 . . 3 ((𝜑𝑔 ∈ (Base‘𝐺)) → (𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
111110ralrimiva 3144 . 2 (𝜑 → ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
112101, 111jca 511 1 (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  Vcvv 3478  wss 3963  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231  ccnv 5688  dom cdm 5689  cima 5692  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  [cec 8742  Basecbs 17245  .rcmulr 17299  0gc0g 17486   /s cqus 17552  NrmSGrpcnsg 19152   ~QG cqg 19153   GrpHom cghm 19243  SRingcsrg 20204  Ringcrg 20251  CRingccrg 20252  rcdsr 20371   RingHom crh 20486  LIdealclidl 21234  RSpancrsp 21235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-rhm 20489  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278
This theorem is referenced by:  aks5lem2  42169
  Copyright terms: Public domain W3C validator