Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmqusspan Structured version   Visualization version   GIF version

Theorem rhmqusspan 42180
Description: Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025.)
Hypotheses
Ref Expression
rhmqusspan.1 0 = (0g𝐻)
rhmqusspan.2 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusspan.3 𝐾 = (𝐹 “ { 0 })
rhmqusspan.4 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusspan.5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusspan.6 (𝜑𝐺 ∈ CRing)
rhmqusspan.7 𝑁 = ((RSpan‘𝐺)‘{𝑋})
rhmqusspan.8 (𝜑𝑋 ∈ (Base‘𝐺))
rhmqusspan.9 (𝜑 → (𝐹𝑋) = 0 )
Assertion
Ref Expression
rhmqusspan (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑔,𝑞
Allowed substitution hints:   𝑄(𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐽(𝑔)   𝐾(𝑔)   𝑁(𝑔)   𝑋(𝑔,𝑞)   0 (𝑔,𝑞)

Proof of Theorem rhmqusspan
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmqusspan.1 . . 3 0 = (0g𝐻)
2 rhmqusspan.2 . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
3 rhmqusspan.3 . . 3 𝐾 = (𝐹 “ { 0 })
4 rhmqusspan.4 . . 3 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
5 rhmqusspan.5 . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
6 rhmqusspan.6 . . 3 (𝜑𝐺 ∈ CRing)
7 rhmqusspan.7 . . . 4 𝑁 = ((RSpan‘𝐺)‘{𝑋})
86crngringd 20162 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Ring)
9 rhmqusspan.8 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ (Base‘𝐺))
10 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2730 . . . . . . . . . . . . . . 15 (RSpan‘𝐺) = (RSpan‘𝐺)
12 eqid 2730 . . . . . . . . . . . . . . 15 (∥r𝐺) = (∥r𝐺)
1310, 11, 12rspsn 21250 . . . . . . . . . . . . . 14 ((𝐺 ∈ Ring ∧ 𝑋 ∈ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
148, 9, 13syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
1514eleq2d 2815 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) ↔ 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1615biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1716imp 406 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦})
18 vex 3454 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ V)
20 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑋(∥r𝐺)𝑦𝑋(∥r𝐺)𝑥))
2120elabg 3646 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} ↔ 𝑋(∥r𝐺)𝑥))
2221biimpd 229 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2423imp 406 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → 𝑋(∥r𝐺)𝑥)
25 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (.r𝐺) = (.r𝐺)
2610, 12, 25dvdsr 20278 . . . . . . . . . . . . . . . . . 18 (𝑋(∥r𝐺)𝑥 ↔ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2726biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑋(∥r𝐺)𝑥 → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2827adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
29 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹‘(𝑧(.r𝐺)𝑋)) = (𝐹𝑥))
3029eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
3130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
322ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Base‘𝐺))
349ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑋 ∈ (Base‘𝐺))
35 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝐻) = (.r𝐻)
3610, 25, 35rhmmul 20402 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
3732, 33, 34, 36syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
38 rhmqusspan.9 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑋) = 0 )
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑋) = 0 )
4039oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = ((𝐹𝑧)(.r𝐻) 0 ))
41 rhmrcl2 20393 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
42 ringsrg 20213 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐻 ∈ Ring → 𝐻 ∈ SRing)
4332, 41, 423syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐻 ∈ SRing)
44 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐻) = (Base‘𝐻)
4510, 44rhmf 20401 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
462, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4847ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑧) ∈ (Base‘𝐻))
4944, 35, 1srgrz 20123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻 ∈ SRing ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5043, 48, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5140, 50eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = 0 )
5237, 51eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5431, 53eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 )
55 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝑦(.r𝐺)𝑋) = 𝑥
56 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑧(.r𝐺)𝑋) = 𝑥
57 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (𝑦(.r𝐺)𝑋) = (𝑧(.r𝐺)𝑋))
5857eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑦(.r𝐺)𝑋) = 𝑥 ↔ (𝑧(.r𝐺)𝑋) = 𝑥))
5955, 56, 58cbvrexw 3283 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 ↔ ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6261adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6354, 62r19.29a 3142 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → (𝐹𝑥) = 0 )
6463ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6564adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6628, 65mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑋(∥r𝐺)𝑥) → (𝐹𝑥) = 0 )
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6924, 68mpd 15 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝐹𝑥) = 0 )
7069ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7170adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7217, 71mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) = 0 )
73 fvexd 6876 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ V)
74 elsng 4606 . . . . . . . . . 10 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7672, 75mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ { 0 })
7746ffund 6695 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7877adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → Fun 𝐹)
79 eqid 2730 . . . . . . . . . . . . . 14 (LIdeal‘𝐺) = (LIdeal‘𝐺)
8079, 10lidl1 21150 . . . . . . . . . . . . 13 (𝐺 ∈ Ring → (Base‘𝐺) ∈ (LIdeal‘𝐺))
818, 80syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐺) ∈ (LIdeal‘𝐺))
829snssd 4776 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (Base‘𝐺))
8311, 79rspssp 21156 . . . . . . . . . . . 12 ((𝐺 ∈ Ring ∧ (Base‘𝐺) ∈ (LIdeal‘𝐺) ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
848, 81, 82, 83syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
8584sselda 3949 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (Base‘𝐺))
86 fdm 6700 . . . . . . . . . . . 12 (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → dom 𝐹 = (Base‘𝐺))
8746, 86syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝐺))
8887adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → dom 𝐹 = (Base‘𝐺))
8985, 88eleqtrrd 2832 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ dom 𝐹)
90 fvimacnv 7028 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9178, 89, 90syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9276, 91mpbid 232 . . . . . . 7 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (𝐹 “ { 0 }))
9392ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ (𝐹 “ { 0 })))
9493ssrdv 3955 . . . . 5 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (𝐹 “ { 0 }))
953eqcomi 2739 . . . . 5 (𝐹 “ { 0 }) = 𝐾
9694, 95sseqtrdi 3990 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ 𝐾)
977, 96eqsstrid 3988 . . 3 (𝜑𝑁𝐾)
9811, 10, 79rspcl 21152 . . . . 5 ((𝐺 ∈ Ring ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
998, 82, 98syl2anc 584 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
1007, 99eqeltrid 2833 . . 3 (𝜑𝑁 ∈ (LIdeal‘𝐺))
1011, 2, 3, 4, 5, 6, 97, 100rhmqusnsg 21202 . 2 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
1022adantr 480 . . . . 5 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
103 rhmghm 20400 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
104102, 103syl 17 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10597adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁𝐾)
106 lidlnsg 21165 . . . . . 6 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
1078, 100, 106syl2anc 584 . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
108107adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
109 simpr 484 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑔 ∈ (Base‘𝐺))
1101, 104, 3, 4, 5, 105, 108, 109ghmqusnsglem1 19219 . . 3 ((𝜑𝑔 ∈ (Base‘𝐺)) → (𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
111110ralrimiva 3126 . 2 (𝜑 → ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
112101, 111jca 511 1 (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  wss 3917  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186  .rcmulr 17228  0gc0g 17409   /s cqus 17475  NrmSGrpcnsg 19060   ~QG cqg 19061   GrpHom cghm 19151  SRingcsrg 20102  Ringcrg 20149  CRingccrg 20150  rcdsr 20270   RingHom crh 20385  LIdealclidl 21123  RSpancrsp 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-rhm 20388  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167
This theorem is referenced by:  aks5lem2  42182
  Copyright terms: Public domain W3C validator