Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmqusspan Structured version   Visualization version   GIF version

Theorem rhmqusspan 42142
Description: Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025.)
Hypotheses
Ref Expression
rhmqusspan.1 0 = (0g𝐻)
rhmqusspan.2 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusspan.3 𝐾 = (𝐹 “ { 0 })
rhmqusspan.4 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
rhmqusspan.5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmqusspan.6 (𝜑𝐺 ∈ CRing)
rhmqusspan.7 𝑁 = ((RSpan‘𝐺)‘{𝑋})
rhmqusspan.8 (𝜑𝑋 ∈ (Base‘𝐺))
rhmqusspan.9 (𝜑 → (𝐹𝑋) = 0 )
Assertion
Ref Expression
rhmqusspan (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝜑,𝑔,𝑞
Allowed substitution hints:   𝑄(𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐽(𝑔)   𝐾(𝑔)   𝑁(𝑔)   𝑋(𝑔,𝑞)   0 (𝑔,𝑞)

Proof of Theorem rhmqusspan
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmqusspan.1 . . 3 0 = (0g𝐻)
2 rhmqusspan.2 . . 3 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
3 rhmqusspan.3 . . 3 𝐾 = (𝐹 “ { 0 })
4 rhmqusspan.4 . . 3 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
5 rhmqusspan.5 . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
6 rhmqusspan.6 . . 3 (𝜑𝐺 ∈ CRing)
7 rhmqusspan.7 . . . 4 𝑁 = ((RSpan‘𝐺)‘{𝑋})
86crngringd 20273 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Ring)
9 rhmqusspan.8 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ (Base‘𝐺))
10 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2740 . . . . . . . . . . . . . . 15 (RSpan‘𝐺) = (RSpan‘𝐺)
12 eqid 2740 . . . . . . . . . . . . . . 15 (∥r𝐺) = (∥r𝐺)
1310, 11, 12rspsn 21366 . . . . . . . . . . . . . 14 ((𝐺 ∈ Ring ∧ 𝑋 ∈ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
148, 9, 13syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) = {𝑦𝑋(∥r𝐺)𝑦})
1514eleq2d 2830 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) ↔ 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1615biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}))
1716imp 406 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦})
18 vex 3492 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ V)
20 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑋(∥r𝐺)𝑦𝑋(∥r𝐺)𝑥))
2120elabg 3690 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} ↔ 𝑋(∥r𝐺)𝑥))
2221biimpd 229 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → 𝑋(∥r𝐺)𝑥))
2423imp 406 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → 𝑋(∥r𝐺)𝑥)
25 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (.r𝐺) = (.r𝐺)
2610, 12, 25dvdsr 20388 . . . . . . . . . . . . . . . . . 18 (𝑋(∥r𝐺)𝑥 ↔ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2726biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑋(∥r𝐺)𝑥 → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
2827adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥))
29 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹‘(𝑧(.r𝐺)𝑋)) = (𝐹𝑥))
3029eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧(.r𝐺)𝑋) = 𝑥 → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
3130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = (𝐹‘(𝑧(.r𝐺)𝑋)))
322ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Base‘𝐺))
349ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑋 ∈ (Base‘𝐺))
35 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝐻) = (.r𝐻)
3610, 25, 35rhmmul 20512 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
3732, 33, 34, 36syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = ((𝐹𝑧)(.r𝐻)(𝐹𝑋)))
38 rhmqusspan.9 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹𝑋) = 0 )
3938ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑋) = 0 )
4039oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = ((𝐹𝑧)(.r𝐻) 0 ))
41 rhmrcl2 20503 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
42 ringsrg 20320 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐻 ∈ Ring → 𝐻 ∈ SRing)
4332, 41, 423syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐻 ∈ SRing)
44 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐻) = (Base‘𝐻)
4510, 44rhmf 20511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
462, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4847ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹𝑧) ∈ (Base‘𝐻))
4944, 35, 1srgrz 20234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻 ∈ SRing ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5043, 48, 49syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻) 0 ) = 0 )
5140, 50eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹𝑧)(.r𝐻)(𝐹𝑋)) = 0 )
5237, 51eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹‘(𝑧(.r𝐺)𝑋)) = 0 )
5431, 53eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 )
55 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧(𝑦(.r𝐺)𝑋) = 𝑥
56 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑧(.r𝐺)𝑋) = 𝑥
57 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (𝑦(.r𝐺)𝑋) = (𝑧(.r𝐺)𝑋))
5857eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑦(.r𝐺)𝑋) = 𝑥 ↔ (𝑧(.r𝐺)𝑋) = 𝑥))
5955, 56, 58cbvrexw 3313 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 ↔ ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥 → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6261adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r𝐺)𝑋) = 𝑥)
6354, 62r19.29a 3168 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥)) → (𝐹𝑥) = 0 )
6463ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6564adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑋(∥r𝐺)𝑥) → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r𝐺)𝑋) = 𝑥) → (𝐹𝑥) = 0 ))
6628, 65mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑋(∥r𝐺)𝑥) → (𝐹𝑥) = 0 )
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝑋(∥r𝐺)𝑥 → (𝐹𝑥) = 0 ))
6924, 68mpd 15 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦}) → (𝐹𝑥) = 0 )
7069ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7170adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝑥 ∈ {𝑦𝑋(∥r𝐺)𝑦} → (𝐹𝑥) = 0 ))
7217, 71mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) = 0 )
73 fvexd 6935 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ V)
74 elsng 4662 . . . . . . . . . 10 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 ))
7672, 75mpbird 257 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹𝑥) ∈ { 0 })
7746ffund 6751 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7877adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → Fun 𝐹)
79 eqid 2740 . . . . . . . . . . . . . 14 (LIdeal‘𝐺) = (LIdeal‘𝐺)
8079, 10lidl1 21266 . . . . . . . . . . . . 13 (𝐺 ∈ Ring → (Base‘𝐺) ∈ (LIdeal‘𝐺))
818, 80syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐺) ∈ (LIdeal‘𝐺))
829snssd 4834 . . . . . . . . . . . 12 (𝜑 → {𝑋} ⊆ (Base‘𝐺))
8311, 79rspssp 21272 . . . . . . . . . . . 12 ((𝐺 ∈ Ring ∧ (Base‘𝐺) ∈ (LIdeal‘𝐺) ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
848, 81, 82, 83syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺))
8584sselda 4008 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (Base‘𝐺))
86 fdm 6756 . . . . . . . . . . . 12 (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → dom 𝐹 = (Base‘𝐺))
8746, 86syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝐺))
8887adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → dom 𝐹 = (Base‘𝐺))
8985, 88eleqtrrd 2847 . . . . . . . . 9 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ dom 𝐹)
90 fvimacnv 7086 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9178, 89, 90syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹𝑥) ∈ { 0 } ↔ 𝑥 ∈ (𝐹 “ { 0 })))
9276, 91mpbid 232 . . . . . . 7 ((𝜑𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (𝐹 “ { 0 }))
9392ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ (𝐹 “ { 0 })))
9493ssrdv 4014 . . . . 5 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (𝐹 “ { 0 }))
953eqcomi 2749 . . . . 5 (𝐹 “ { 0 }) = 𝐾
9694, 95sseqtrdi 4059 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ 𝐾)
977, 96eqsstrid 4057 . . 3 (𝜑𝑁𝐾)
9811, 10, 79rspcl 21268 . . . . 5 ((𝐺 ∈ Ring ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
998, 82, 98syl2anc 583 . . . 4 (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺))
1007, 99eqeltrid 2848 . . 3 (𝜑𝑁 ∈ (LIdeal‘𝐺))
1011, 2, 3, 4, 5, 6, 97, 100rhmqusnsg 21318 . 2 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
1022adantr 480 . . . . 5 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
103 rhmghm 20510 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
104102, 103syl 17 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10597adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁𝐾)
106 lidlnsg 21281 . . . . . 6 ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
1078, 100, 106syl2anc 583 . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
108107adantr 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺))
109 simpr 484 . . . 4 ((𝜑𝑔 ∈ (Base‘𝐺)) → 𝑔 ∈ (Base‘𝐺))
1101, 104, 3, 4, 5, 105, 108, 109ghmqusnsglem1 19320 . . 3 ((𝜑𝑔 ∈ (Base‘𝐺)) → (𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
111110ralrimiva 3152 . 2 (𝜑 → ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔))
112101, 111jca 511 1 (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  wss 3976  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  .rcmulr 17312  0gc0g 17499   /s cqus 17565  NrmSGrpcnsg 19161   ~QG cqg 19162   GrpHom cghm 19252  SRingcsrg 20213  Ringcrg 20260  CRingccrg 20261  rcdsr 20380   RingHom crh 20495  LIdealclidl 21239  RSpancrsp 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-rhm 20498  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283
This theorem is referenced by:  aks5lem2  42144
  Copyright terms: Public domain W3C validator