Step | Hyp | Ref
| Expression |
1 | | rhmqusspan.1 |
. . 3
⊢ 0 =
(0g‘𝐻) |
2 | | rhmqusspan.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
3 | | rhmqusspan.3 |
. . 3
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
4 | | rhmqusspan.4 |
. . 3
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
5 | | rhmqusspan.5 |
. . 3
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
6 | | rhmqusspan.6 |
. . 3
⊢ (𝜑 → 𝐺 ∈ CRing) |
7 | | rhmqusspan.7 |
. . . 4
⊢ 𝑁 = ((RSpan‘𝐺)‘{𝑋}) |
8 | 6 | crngringd 20273 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ Ring) |
9 | | rhmqusspan.8 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
10 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐺) =
(Base‘𝐺) |
11 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(RSpan‘𝐺) =
(RSpan‘𝐺) |
12 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(∥r‘𝐺) = (∥r‘𝐺) |
13 | 10, 11, 12 | rspsn 21366 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Ring ∧ 𝑋 ∈ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) = {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) |
14 | 8, 9, 13 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((RSpan‘𝐺)‘{𝑋}) = {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) |
15 | 14 | eleq2d 2830 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) ↔ 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦})) |
16 | 15 | biimpd 229 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦})) |
17 | 16 | imp 406 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) |
18 | | vex 3492 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑥 ∈ V) |
20 | | breq2 5170 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑋(∥r‘𝐺)𝑦 ↔ 𝑋(∥r‘𝐺)𝑥)) |
21 | 20 | elabg 3690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ V → (𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦} ↔ 𝑋(∥r‘𝐺)𝑥)) |
22 | 21 | biimpd 229 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ V → (𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦} → 𝑋(∥r‘𝐺)𝑥)) |
23 | 19, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦} → 𝑋(∥r‘𝐺)𝑥)) |
24 | 23 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) → 𝑋(∥r‘𝐺)𝑥) |
25 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(.r‘𝐺) = (.r‘𝐺) |
26 | 10, 12, 25 | dvdsr 20388 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋(∥r‘𝐺)𝑥 ↔ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) |
27 | 26 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋(∥r‘𝐺)𝑥 → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑋(∥r‘𝐺)𝑥) → (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) |
29 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧(.r‘𝐺)𝑋) = 𝑥 → (𝐹‘(𝑧(.r‘𝐺)𝑋)) = (𝐹‘𝑥)) |
30 | 29 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧(.r‘𝐺)𝑋) = 𝑥 → (𝐹‘𝑥) = (𝐹‘(𝑧(.r‘𝐺)𝑋))) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r‘𝐺)𝑋) = 𝑥) → (𝐹‘𝑥) = (𝐹‘(𝑧(.r‘𝐺)𝑋))) |
32 | 2 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
33 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Base‘𝐺)) |
34 | 9 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑋 ∈ (Base‘𝐺)) |
35 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(.r‘𝐻) = (.r‘𝐻) |
36 | 10, 25, 35 | rhmmul 20512 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r‘𝐺)𝑋)) = ((𝐹‘𝑧)(.r‘𝐻)(𝐹‘𝑋))) |
37 | 32, 33, 34, 36 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r‘𝐺)𝑋)) = ((𝐹‘𝑧)(.r‘𝐻)(𝐹‘𝑋))) |
38 | | rhmqusspan.9 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹‘𝑋) = 0 ) |
39 | 38 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘𝑋) = 0 ) |
40 | 39 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹‘𝑧)(.r‘𝐻)(𝐹‘𝑋)) = ((𝐹‘𝑧)(.r‘𝐻) 0 )) |
41 | | rhmrcl2 20503 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring) |
42 | | ringsrg 20320 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐻 ∈ Ring → 𝐻 ∈ SRing) |
43 | 32, 41, 42 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝐻 ∈ SRing) |
44 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(Base‘𝐻) =
(Base‘𝐻) |
45 | 10, 44 | rhmf 20511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
46 | 2, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
48 | 47 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘𝑧) ∈ (Base‘𝐻)) |
49 | 44, 35, 1 | srgrz 20234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐻 ∈ SRing ∧ (𝐹‘𝑧) ∈ (Base‘𝐻)) → ((𝐹‘𝑧)(.r‘𝐻) 0 ) = 0 ) |
50 | 43, 48, 49 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹‘𝑧)(.r‘𝐻) 0 ) = 0 ) |
51 | 40, 50 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝐹‘𝑧)(.r‘𝐻)(𝐹‘𝑋)) = 0 ) |
52 | 37, 51 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(𝑧(.r‘𝐺)𝑋)) = 0 ) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r‘𝐺)𝑋) = 𝑥) → (𝐹‘(𝑧(.r‘𝐺)𝑋)) = 0 ) |
54 | 31, 53 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) ∧ 𝑧 ∈ (Base‘𝐺)) ∧ (𝑧(.r‘𝐺)𝑋) = 𝑥) → (𝐹‘𝑥) = 0 ) |
55 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑧(𝑦(.r‘𝐺)𝑋) = 𝑥 |
56 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑦(𝑧(.r‘𝐺)𝑋) = 𝑥 |
57 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → (𝑦(.r‘𝐺)𝑋) = (𝑧(.r‘𝐺)𝑋)) |
58 | 57 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → ((𝑦(.r‘𝐺)𝑋) = 𝑥 ↔ (𝑧(.r‘𝐺)𝑋) = 𝑥)) |
59 | 55, 56, 58 | cbvrexw 3313 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑦 ∈
(Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥 ↔ ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r‘𝐺)𝑋) = 𝑥) |
60 | 59 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑦 ∈
(Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥 → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r‘𝐺)𝑋) = 𝑥) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r‘𝐺)𝑋) = 𝑥) |
62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) → ∃𝑧 ∈ (Base‘𝐺)(𝑧(.r‘𝐺)𝑋) = 𝑥) |
63 | 54, 62 | r19.29a 3168 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥)) → (𝐹‘𝑥) = 0 ) |
64 | 63 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥) → (𝐹‘𝑥) = 0 )) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑋(∥r‘𝐺)𝑥) → ((𝑋 ∈ (Base‘𝐺) ∧ ∃𝑦 ∈ (Base‘𝐺)(𝑦(.r‘𝐺)𝑋) = 𝑥) → (𝐹‘𝑥) = 0 )) |
66 | 28, 65 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋(∥r‘𝐺)𝑥) → (𝐹‘𝑥) = 0 ) |
67 | 66 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋(∥r‘𝐺)𝑥 → (𝐹‘𝑥) = 0 )) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) → (𝑋(∥r‘𝐺)𝑥 → (𝐹‘𝑥) = 0 )) |
69 | 24, 68 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦}) → (𝐹‘𝑥) = 0 ) |
70 | 69 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦} → (𝐹‘𝑥) = 0 )) |
71 | 70 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝑥 ∈ {𝑦 ∣ 𝑋(∥r‘𝐺)𝑦} → (𝐹‘𝑥) = 0 )) |
72 | 17, 71 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹‘𝑥) = 0 ) |
73 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹‘𝑥) ∈ V) |
74 | | elsng 4662 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 )) |
75 | 73, 74 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 )) |
76 | 72, 75 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → (𝐹‘𝑥) ∈ { 0 }) |
77 | 46 | ffund 6751 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
78 | 77 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → Fun 𝐹) |
79 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(LIdeal‘𝐺) =
(LIdeal‘𝐺) |
80 | 79, 10 | lidl1 21266 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Ring →
(Base‘𝐺) ∈
(LIdeal‘𝐺)) |
81 | 8, 80 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝐺) ∈ (LIdeal‘𝐺)) |
82 | 9 | snssd 4834 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑋} ⊆ (Base‘𝐺)) |
83 | 11, 79 | rspssp 21272 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Ring ∧
(Base‘𝐺) ∈
(LIdeal‘𝐺) ∧
{𝑋} ⊆
(Base‘𝐺)) →
((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺)) |
84 | 8, 81, 82, 83 | syl3anc 1371 |
. . . . . . . . . . 11
⊢ (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (Base‘𝐺)) |
85 | 84 | sselda 4008 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (Base‘𝐺)) |
86 | | fdm 6756 |
. . . . . . . . . . . 12
⊢ (𝐹:(Base‘𝐺)⟶(Base‘𝐻) → dom 𝐹 = (Base‘𝐺)) |
87 | 46, 86 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (Base‘𝐺)) |
88 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → dom 𝐹 = (Base‘𝐺)) |
89 | 85, 88 | eleqtrrd 2847 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ dom 𝐹) |
90 | | fvimacnv 7086 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ { 0 } ↔ 𝑥 ∈ (◡𝐹 “ { 0 }))) |
91 | 78, 89, 90 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → ((𝐹‘𝑥) ∈ { 0 } ↔ 𝑥 ∈ (◡𝐹 “ { 0 }))) |
92 | 76, 91 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((RSpan‘𝐺)‘{𝑋})) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
93 | 92 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((RSpan‘𝐺)‘{𝑋}) → 𝑥 ∈ (◡𝐹 “ { 0 }))) |
94 | 93 | ssrdv 4014 |
. . . . 5
⊢ (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ (◡𝐹 “ { 0 })) |
95 | 3 | eqcomi 2749 |
. . . . 5
⊢ (◡𝐹 “ { 0 }) = 𝐾 |
96 | 94, 95 | sseqtrdi 4059 |
. . . 4
⊢ (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ⊆ 𝐾) |
97 | 7, 96 | eqsstrid 4057 |
. . 3
⊢ (𝜑 → 𝑁 ⊆ 𝐾) |
98 | 11, 10, 79 | rspcl 21268 |
. . . . 5
⊢ ((𝐺 ∈ Ring ∧ {𝑋} ⊆ (Base‘𝐺)) → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺)) |
99 | 8, 82, 98 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((RSpan‘𝐺)‘{𝑋}) ∈ (LIdeal‘𝐺)) |
100 | 7, 99 | eqeltrid 2848 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (LIdeal‘𝐺)) |
101 | 1, 2, 3, 4, 5, 6, 97, 100 | rhmqusnsg 21318 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) |
102 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 RingHom 𝐻)) |
103 | | rhmghm 20510 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
104 | 102, 103 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
105 | 97 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → 𝑁 ⊆ 𝐾) |
106 | | lidlnsg 21281 |
. . . . . 6
⊢ ((𝐺 ∈ Ring ∧ 𝑁 ∈ (LIdeal‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
107 | 8, 100, 106 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
108 | 107 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
109 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → 𝑔 ∈ (Base‘𝐺)) |
110 | 1, 104, 3, 4, 5, 105, 108, 109 | ghmqusnsglem1 19320 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘𝐺)) → (𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹‘𝑔)) |
111 | 110 | ralrimiva 3152 |
. 2
⊢ (𝜑 → ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹‘𝑔)) |
112 | 101, 111 | jca 511 |
1
⊢ (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹‘𝑔))) |