![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isncvsngpd | Structured version Visualization version GIF version |
Description: Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
isncvsngp.v | ⊢ 𝑉 = (Base‘𝑊) |
isncvsngp.n | ⊢ 𝑁 = (norm‘𝑊) |
isncvsngp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isncvsngp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isncvsngp.k | ⊢ 𝐾 = (Base‘𝐹) |
isncvsngpd.v | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
isncvsngpd.g | ⊢ (𝜑 → 𝑊 ∈ NrmGrp) |
isncvsngpd.t | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) |
Ref | Expression |
---|---|
isncvsngpd | ⊢ (𝜑 → 𝑊 ∈ (NrmVec ∩ ℂVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isncvsngpd.v | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
2 | isncvsngpd.g | . 2 ⊢ (𝜑 → 𝑊 ∈ NrmGrp) | |
3 | isncvsngpd.t | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) | |
4 | 3 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) |
5 | isncvsngp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
6 | isncvsngp.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
7 | isncvsngp.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | isncvsngp.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | isncvsngp.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
10 | 5, 6, 7, 8, 9 | isncvsngp 25208 | . 2 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
11 | 1, 2, 4, 10 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝑊 ∈ (NrmVec ∩ ℂVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∩ cin 3965 ‘cfv 6569 (class class class)co 7438 · cmul 11167 abscabs 15279 Basecbs 17254 Scalarcsca 17310 ·𝑠 cvsca 17311 normcnm 24614 NrmGrpcngp 24615 NrmVeccnvc 24619 ℂVecccvs 25181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 ax-mulf 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ico 13399 df-fz 13554 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-rest 17478 df-topn 17479 df-0g 17497 df-topgen 17499 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20596 df-abv 20836 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-xms 24355 df-ms 24356 df-nm 24620 df-ngp 24621 df-nrg 24623 df-nlm 24624 df-nvc 24625 df-clm 25121 df-cvs 25182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |