![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhvq | Structured version Visualization version GIF version |
Description: The image of a quotient by the βHom homomorphism. (Contributed by Thierry Arnoux, 28-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | β’ π΅ = (Baseβπ ) |
qqhval2.1 | β’ / = (/rβπ ) |
qqhval2.2 | β’ πΏ = (β€RHomβπ ) |
Ref | Expression |
---|---|
qqhvq | β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β ((βHomβπ )β(π / π)) = ((πΏβπ) / (πΏβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12947 | . . . . 5 β’ β€ β β | |
2 | simpr1 1193 | . . . . 5 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β π β β€) | |
3 | 1, 2 | sselid 3980 | . . . 4 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β π β β) |
4 | simpr2 1194 | . . . . 5 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β π β β€) | |
5 | 1, 4 | sselid 3980 | . . . 4 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β π β β) |
6 | simpr3 1195 | . . . 4 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β π β 0) | |
7 | qdivcl 12961 | . . . 4 β’ ((π β β β§ π β β β§ π β 0) β (π / π) β β) | |
8 | 3, 5, 6, 7 | syl3anc 1370 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β (π / π) β β) |
9 | qqhval2.0 | . . . 4 β’ π΅ = (Baseβπ ) | |
10 | qqhval2.1 | . . . 4 β’ / = (/rβπ ) | |
11 | qqhval2.2 | . . . 4 β’ πΏ = (β€RHomβπ ) | |
12 | 9, 10, 11 | qqhvval 33427 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π / π) β β) β ((βHomβπ )β(π / π)) = ((πΏβ(numerβ(π / π))) / (πΏβ(denomβ(π / π))))) |
13 | 8, 12 | syldan 590 | . 2 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β ((βHomβπ )β(π / π)) = ((πΏβ(numerβ(π / π))) / (πΏβ(denomβ(π / π))))) |
14 | 9, 10, 11 | qqhval2lem 33425 | . 2 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β ((πΏβ(numerβ(π / π))) / (πΏβ(denomβ(π / π)))) = ((πΏβπ) / (πΏβπ))) |
15 | 13, 14 | eqtrd 2771 | 1 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ (π β β€ β§ π β β€ β§ π β 0)) β ((βHomβπ )β(π / π)) = ((πΏβπ) / (πΏβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 0cc0 11116 / cdiv 11878 β€cz 12565 βcq 12939 numercnumer 16676 denomcdenom 16677 Basecbs 17151 /rcdvr 20298 DivRingcdr 20583 β€RHomczrh 21359 chrcchr 21361 βHomcqqh 33416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-fz 13492 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-dvds 16205 df-gcd 16443 df-numer 16678 df-denom 16679 df-gz 16870 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19046 df-ghm 19135 df-od 19444 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-drng 20585 df-cnfld 21234 df-zring 21307 df-zrh 21363 df-chr 21365 df-qqh 33417 |
This theorem is referenced by: qqhghm 33432 qqhrhm 33433 |
Copyright terms: Public domain | W3C validator |