![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhvval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqhvval | ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
3 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 1, 2, 3 | qqhval2 30899 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) |
5 | 4 | adantr 473 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) |
6 | simpr 477 | . . . . 5 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → 𝑞 = 𝑄) | |
7 | 6 | fveq2d 6508 | . . . 4 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (numer‘𝑞) = (numer‘𝑄)) |
8 | 7 | fveq2d 6508 | . . 3 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘𝑄))) |
9 | 6 | fveq2d 6508 | . . . 4 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (denom‘𝑞) = (denom‘𝑄)) |
10 | 9 | fveq2d 6508 | . . 3 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘𝑄))) |
11 | 8, 10 | oveq12d 7000 | . 2 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
12 | simpr 477 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ) | |
13 | ovexd 7016 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))) ∈ V) | |
14 | 5, 11, 12, 13 | fvmptd 6607 | 1 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 Vcvv 3417 ↦ cmpt 5013 ‘cfv 6193 (class class class)co 6982 0cc0 10341 ℚcq 12168 numercnumer 15935 denomcdenom 15936 Basecbs 16345 /rcdvr 19167 DivRingcdr 19237 ℤRHomczrh 20364 chrcchr 20366 ℚHomcqqh 30889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-tpos 7701 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-map 8214 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-sup 8707 df-inf 8708 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-fz 12715 df-fl 12983 df-mod 13059 df-seq 13191 df-exp 13251 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-dvds 15474 df-gcd 15710 df-numer 15937 df-denom 15938 df-gz 16128 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-0g 16577 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-ghm 18139 df-od 18430 df-cmn 18680 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-rnghom 19202 df-drng 19239 df-subrg 19268 df-cnfld 20263 df-zring 20335 df-zrh 20368 df-chr 20370 df-qqh 30890 |
This theorem is referenced by: qqh0 30901 qqh1 30902 qqhvq 30904 qqhnm 30907 qqhre 30937 |
Copyright terms: Public domain | W3C validator |