| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhvval | Structured version Visualization version GIF version | ||
| Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
| qqhval2.1 | ⊢ / = (/r‘𝑅) |
| qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqhvval | ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 3 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 4 | 1, 2, 3 | qqhval2 33978 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) |
| 6 | simpr 484 | . . . . 5 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → 𝑞 = 𝑄) | |
| 7 | 6 | fveq2d 6864 | . . . 4 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (numer‘𝑞) = (numer‘𝑄)) |
| 8 | 7 | fveq2d 6864 | . . 3 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘𝑄))) |
| 9 | 6 | fveq2d 6864 | . . . 4 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (denom‘𝑞) = (denom‘𝑄)) |
| 10 | 9 | fveq2d 6864 | . . 3 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘𝑄))) |
| 11 | 8, 10 | oveq12d 7407 | . 2 ⊢ ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
| 12 | simpr 484 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ) | |
| 13 | ovexd 7424 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))) ∈ V) | |
| 14 | 5, 11, 12, 13 | fvmptd 6977 | 1 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 0cc0 11074 ℚcq 12913 numercnumer 16709 denomcdenom 16710 Basecbs 17185 /rcdvr 20315 DivRingcdr 20644 ℤRHomczrh 21415 chrcchr 21417 ℚHomcqqh 33966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-fz 13475 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 df-gcd 16471 df-numer 16711 df-denom 16712 df-gz 16907 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-od 19464 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-drng 20646 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-chr 21421 df-qqh 33967 |
| This theorem is referenced by: qqh0 33980 qqh1 33981 qqhvq 33983 qqhnm 33986 qqhre 34016 |
| Copyright terms: Public domain | W3C validator |