Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhvval Structured version   Visualization version   GIF version

Theorem qqhvval 33979
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhvval (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))))

Proof of Theorem qqhvval
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
2 qqhval2.1 . . . 4 / = (/r𝑅)
3 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
41, 2, 3qqhval2 33978 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
54adantr 480 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
6 simpr 484 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → 𝑞 = 𝑄)
76fveq2d 6864 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (numer‘𝑞) = (numer‘𝑄))
87fveq2d 6864 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘𝑄)))
96fveq2d 6864 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (denom‘𝑞) = (denom‘𝑄))
109fveq2d 6864 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘𝑄)))
118, 10oveq12d 7407 . 2 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) ∧ 𝑞 = 𝑄) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))))
12 simpr 484 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
13 ovexd 7424 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))) ∈ V)
145, 11, 12, 13fvmptd 6977 1 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5190  cfv 6513  (class class class)co 7389  0cc0 11074  cq 12913  numercnumer 16709  denomcdenom 16710  Basecbs 17185  /rcdvr 20315  DivRingcdr 20644  ℤRHomczrh 21415  chrcchr 21417  ℚHomcqqh 33966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-fz 13475  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229  df-gcd 16471  df-numer 16711  df-denom 16712  df-gz 16907  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-od 19464  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-drng 20646  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-chr 21421  df-qqh 33967
This theorem is referenced by:  qqh0  33980  qqh1  33981  qqhvq  33983  qqhnm  33986  qqhre  34016
  Copyright terms: Public domain W3C validator