Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1subd Structured version   Visualization version   GIF version

Theorem evls1subd 33533
Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ressply1evl.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl.k 𝐾 = (Base‘𝑆)
ressply1evl.w 𝑊 = (Poly1𝑈)
ressply1evl.u 𝑈 = (𝑆s 𝑅)
ressply1evl.b 𝐵 = (Base‘𝑊)
evls1subd.1 𝐷 = (-g𝑊)
evls1subd.2 = (-g𝑆)
evls1subd.s (𝜑𝑆 ∈ CRing)
evls1subd.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1subd.m (𝜑𝑀𝐵)
evls1subd.n (𝜑𝑁𝐵)
evls1subd.y (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1subd (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1subd
StepHypRef Expression
1 evls1subd.1 . . . . . . 7 𝐷 = (-g𝑊)
21oveqi 7359 . . . . . 6 (𝑀𝐷𝑁) = (𝑀(-g𝑊)𝑁)
3 eqid 2731 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
4 ressply1evl.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
5 ressply1evl.w . . . . . . 7 𝑊 = (Poly1𝑈)
6 ressply1evl.b . . . . . . 7 𝐵 = (Base‘𝑊)
7 evls1subd.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 eqid 2731 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
9 evls1subd.m . . . . . . 7 (𝜑𝑀𝐵)
10 evls1subd.n . . . . . . 7 (𝜑𝑁𝐵)
113, 4, 5, 6, 7, 8, 9, 10ressply1sub 33531 . . . . . 6 (𝜑 → (𝑀(-g𝑊)𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
122, 11eqtrid 2778 . . . . 5 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
133, 4, 5, 6subrgply1 22146 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1𝑆)))
14 subrgsubg 20493 . . . . . . 7 (𝐵 ∈ (SubRing‘(Poly1𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1𝑆)))
157, 13, 143syl 18 . . . . . 6 (𝜑𝐵 ∈ (SubGrp‘(Poly1𝑆)))
16 eqid 2731 . . . . . . 7 (-g‘(Poly1𝑆)) = (-g‘(Poly1𝑆))
17 eqid 2731 . . . . . . 7 (-g‘((Poly1𝑆) ↾s 𝐵)) = (-g‘((Poly1𝑆) ↾s 𝐵))
1816, 8, 17subgsub 19051 . . . . . 6 ((𝐵 ∈ (SubGrp‘(Poly1𝑆)) ∧ 𝑀𝐵𝑁𝐵) → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
1915, 9, 10, 18syl3anc 1373 . . . . 5 (𝜑 → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
2012, 19eqtr4d 2769 . . . 4 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1𝑆))𝑁))
2120fveq2d 6826 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁)))
2221fveq1d 6824 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶))
23 ressply1evl.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
24 ressply1evl.k . . . . . 6 𝐾 = (Base‘𝑆)
25 eqid 2731 . . . . . 6 (eval1𝑆) = (eval1𝑆)
26 evls1subd.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2723, 24, 5, 4, 6, 25, 26, 7ressply1evl 22286 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2827fveq1d 6824 . . . 4 (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)))
294subrgring 20490 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
305ply1ring 22161 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
317, 29, 303syl 18 . . . . . . 7 (𝜑𝑊 ∈ Ring)
3231ringgrpd 20161 . . . . . 6 (𝜑𝑊 ∈ Grp)
336, 1grpsubcl 18933 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑀𝐵𝑁𝐵) → (𝑀𝐷𝑁) ∈ 𝐵)
3432, 9, 10, 33syl3anc 1373 . . . . 5 (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵)
3534fvresd 6842 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀𝐷𝑁)))
3628, 35eqtr2d 2767 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁)))
3736fveq1d 6824 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶))
38 eqid 2731 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
39 evls1subd.y . . . 4 (𝜑𝐶𝐾)
40 eqid 2731 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
41 eqid 2731 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
423, 4, 5, 6, 7, 40, 41, 38ressply1bas2 22141 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
43 inss2 4188 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4442, 43eqsstrdi 3979 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4544, 9sseldd 3935 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4627fveq1d 6824 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
479fvresd 6842 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4846, 47eqtr2d 2767 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4948fveq1d 6824 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
5045, 49jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
5144, 10sseldd 3935 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
5227fveq1d 6824 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
5310fvresd 6842 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5452, 53eqtr2d 2767 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5554fveq1d 6824 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5651, 55jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
57 evls1subd.2 . . . 4 = (-g𝑆)
5825, 3, 24, 38, 26, 39, 50, 56, 16, 57evl1subd 22258 . . 3 (𝜑 → ((𝑀(-g‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶))))
5958simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
6022, 37, 593eqtr3d 2774 1 (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3901  cres 5618  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033  Ringcrg 20152  CRingccrg 20153  SubRingcsubrg 20485  PwSer1cps1 22088  Poly1cpl1 22090   evalSub1 ces1 22229  eval1ce1 22230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-cring 20155  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-assa 21791  df-asp 21792  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-evls 22010  df-evl 22011  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-evls1 22231  df-evl1 22232
This theorem is referenced by:  irredminply  33727  2sqr3minply  33791
  Copyright terms: Public domain W3C validator