| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evls1subd | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1subd.1 | ⊢ 𝐷 = (-g‘𝑊) |
| evls1subd.2 | ⊢ − = (-g‘𝑆) |
| evls1subd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1subd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1subd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1subd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1subd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1subd | ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1subd.1 | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑊) | |
| 2 | 1 | oveqi 7359 | . . . . . 6 ⊢ (𝑀𝐷𝑁) = (𝑀(-g‘𝑊)𝑁) |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 4 | ressply1evl.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | ressply1evl.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 6 | ressply1evl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | evls1subd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | eqid 2731 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 9 | evls1subd.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 10 | evls1subd.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | ressply1sub 33531 | . . . . . 6 ⊢ (𝜑 → (𝑀(-g‘𝑊)𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | 2, 11 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 13 | 3, 4, 5, 6 | subrgply1 22146 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1‘𝑆))) |
| 14 | subrgsubg 20493 | . . . . . . 7 ⊢ (𝐵 ∈ (SubRing‘(Poly1‘𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) | |
| 15 | 7, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) |
| 16 | eqid 2731 | . . . . . . 7 ⊢ (-g‘(Poly1‘𝑆)) = (-g‘(Poly1‘𝑆)) | |
| 17 | eqid 2731 | . . . . . . 7 ⊢ (-g‘((Poly1‘𝑆) ↾s 𝐵)) = (-g‘((Poly1‘𝑆) ↾s 𝐵)) | |
| 18 | 16, 8, 17 | subgsub 19051 | . . . . . 6 ⊢ ((𝐵 ∈ (SubGrp‘(Poly1‘𝑆)) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 19 | 15, 9, 10, 18 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 20 | 12, 19 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1‘𝑆))𝑁)) |
| 21 | 20 | fveq2d 6826 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))) |
| 22 | 21 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 23 | ressply1evl.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 24 | ressply1evl.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 25 | eqid 2731 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 26 | evls1subd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 27 | 23, 24, 5, 4, 6, 25, 26, 7 | ressply1evl 22286 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 28 | 27 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁))) |
| 29 | 4 | subrgring 20490 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 30 | 5 | ply1ring 22161 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 31 | 7, 29, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 32 | 31 | ringgrpd 20161 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 33 | 6, 1 | grpsubcl 18933 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀𝐷𝑁) ∈ 𝐵) |
| 34 | 32, 9, 10, 33 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵) |
| 35 | 34 | fvresd 6842 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀𝐷𝑁))) |
| 36 | 28, 35 | eqtr2d 2767 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁))) |
| 37 | 36 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶)) |
| 38 | eqid 2731 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 39 | evls1subd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 40 | eqid 2731 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 41 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 42 | 3, 4, 5, 6, 7, 40, 41, 38 | ressply1bas2 22141 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 43 | inss2 4188 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 44 | 42, 43 | eqsstrdi 3979 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 45 | 44, 9 | sseldd 3935 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 46 | 27 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 47 | 9 | fvresd 6842 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 48 | 46, 47 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 49 | 48 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 50 | 45, 49 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 51 | 44, 10 | sseldd 3935 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 52 | 27 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 53 | 10 | fvresd 6842 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 54 | 52, 53 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 55 | 54 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 56 | 51, 55 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 57 | evls1subd.2 | . . . 4 ⊢ − = (-g‘𝑆) | |
| 58 | 25, 3, 24, 38, 26, 39, 50, 56, 16, 57 | evl1subd 22258 | . . 3 ⊢ (𝜑 → ((𝑀(-g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶)))) |
| 59 | 58 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| 60 | 22, 37, 59 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Grpcgrp 18846 -gcsg 18848 SubGrpcsubg 19033 Ringcrg 20152 CRingccrg 20153 SubRingcsubrg 20485 PwSer1cps1 22088 Poly1cpl1 22090 evalSub1 ces1 22229 eval1ce1 22230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19126 df-cntz 19230 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-srg 20106 df-ring 20154 df-cring 20155 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-lmod 20796 df-lss 20866 df-lsp 20906 df-assa 21791 df-asp 21792 df-ascl 21793 df-psr 21847 df-mvr 21848 df-mpl 21849 df-opsr 21851 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-evls1 22231 df-evl1 22232 |
| This theorem is referenced by: irredminply 33727 2sqr3minply 33791 |
| Copyright terms: Public domain | W3C validator |