| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evls1subd | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1subd.1 | ⊢ 𝐷 = (-g‘𝑊) |
| evls1subd.2 | ⊢ − = (-g‘𝑆) |
| evls1subd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1subd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1subd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1subd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1subd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1subd | ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1subd.1 | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑊) | |
| 2 | 1 | oveqi 7366 | . . . . . 6 ⊢ (𝑀𝐷𝑁) = (𝑀(-g‘𝑊)𝑁) |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 4 | ressply1evl.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | ressply1evl.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 6 | ressply1evl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | evls1subd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 9 | evls1subd.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 10 | evls1subd.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | ressply1sub 33518 | . . . . . 6 ⊢ (𝜑 → (𝑀(-g‘𝑊)𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | 2, 11 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 13 | 3, 4, 5, 6 | subrgply1 22133 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1‘𝑆))) |
| 14 | subrgsubg 20480 | . . . . . . 7 ⊢ (𝐵 ∈ (SubRing‘(Poly1‘𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) | |
| 15 | 7, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) |
| 16 | eqid 2729 | . . . . . . 7 ⊢ (-g‘(Poly1‘𝑆)) = (-g‘(Poly1‘𝑆)) | |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (-g‘((Poly1‘𝑆) ↾s 𝐵)) = (-g‘((Poly1‘𝑆) ↾s 𝐵)) | |
| 18 | 16, 8, 17 | subgsub 19035 | . . . . . 6 ⊢ ((𝐵 ∈ (SubGrp‘(Poly1‘𝑆)) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 19 | 15, 9, 10, 18 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 20 | 12, 19 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1‘𝑆))𝑁)) |
| 21 | 20 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))) |
| 22 | 21 | fveq1d 6828 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 23 | ressply1evl.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 24 | ressply1evl.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 25 | eqid 2729 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 26 | evls1subd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 27 | 23, 24, 5, 4, 6, 25, 26, 7 | ressply1evl 22273 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 28 | 27 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁))) |
| 29 | 4 | subrgring 20477 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 30 | 5 | ply1ring 22148 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 31 | 7, 29, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 32 | 31 | ringgrpd 20145 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 33 | 6, 1 | grpsubcl 18917 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀𝐷𝑁) ∈ 𝐵) |
| 34 | 32, 9, 10, 33 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵) |
| 35 | 34 | fvresd 6846 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀𝐷𝑁))) |
| 36 | 28, 35 | eqtr2d 2765 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁))) |
| 37 | 36 | fveq1d 6828 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶)) |
| 38 | eqid 2729 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 39 | evls1subd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 40 | eqid 2729 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 41 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 42 | 3, 4, 5, 6, 7, 40, 41, 38 | ressply1bas2 22128 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 43 | inss2 4191 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 44 | 42, 43 | eqsstrdi 3982 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 45 | 44, 9 | sseldd 3938 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 46 | 27 | fveq1d 6828 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 47 | 9 | fvresd 6846 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 48 | 46, 47 | eqtr2d 2765 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 49 | 48 | fveq1d 6828 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 50 | 45, 49 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 51 | 44, 10 | sseldd 3938 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 52 | 27 | fveq1d 6828 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 53 | 10 | fvresd 6846 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 54 | 52, 53 | eqtr2d 2765 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 55 | 54 | fveq1d 6828 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 56 | 51, 55 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 57 | evls1subd.2 | . . . 4 ⊢ − = (-g‘𝑆) | |
| 58 | 25, 3, 24, 38, 26, 39, 50, 56, 16, 57 | evl1subd 22245 | . . 3 ⊢ (𝜑 → ((𝑀(-g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶)))) |
| 59 | 58 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| 60 | 22, 37, 59 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 Grpcgrp 18830 -gcsg 18832 SubGrpcsubg 19017 Ringcrg 20136 CRingccrg 20137 SubRingcsubrg 20472 PwSer1cps1 22075 Poly1cpl1 22077 evalSub1 ces1 22216 eval1ce1 22217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-evls1 22218 df-evl1 22219 |
| This theorem is referenced by: irredminply 33685 2sqr3minply 33749 |
| Copyright terms: Public domain | W3C validator |