![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evls1subd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
Ref | Expression |
---|---|
ressply1evl.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
ressply1evl.k | ⊢ 𝐾 = (Base‘𝑆) |
ressply1evl.w | ⊢ 𝑊 = (Poly1‘𝑈) |
ressply1evl.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
ressply1evl.b | ⊢ 𝐵 = (Base‘𝑊) |
evls1subd.1 | ⊢ 𝐷 = (-g‘𝑊) |
evls1subd.2 | ⊢ − = (-g‘𝑆) |
evls1subd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1subd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1subd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
evls1subd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
evls1subd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evls1subd | ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1subd.1 | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑊) | |
2 | 1 | oveqi 7439 | . . . . . 6 ⊢ (𝑀𝐷𝑁) = (𝑀(-g‘𝑊)𝑁) |
3 | eqid 2728 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
4 | ressply1evl.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
5 | ressply1evl.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
6 | ressply1evl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
7 | evls1subd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
8 | eqid 2728 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
9 | evls1subd.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
10 | evls1subd.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | ressply1sub 33288 | . . . . . 6 ⊢ (𝜑 → (𝑀(-g‘𝑊)𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
12 | 2, 11 | eqtrid 2780 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
13 | 3, 4, 5, 6 | subrgply1 22158 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1‘𝑆))) |
14 | subrgsubg 20523 | . . . . . . 7 ⊢ (𝐵 ∈ (SubRing‘(Poly1‘𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) | |
15 | 7, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘(Poly1‘𝑆))) |
16 | eqid 2728 | . . . . . . 7 ⊢ (-g‘(Poly1‘𝑆)) = (-g‘(Poly1‘𝑆)) | |
17 | eqid 2728 | . . . . . . 7 ⊢ (-g‘((Poly1‘𝑆) ↾s 𝐵)) = (-g‘((Poly1‘𝑆) ↾s 𝐵)) | |
18 | 16, 8, 17 | subgsub 19100 | . . . . . 6 ⊢ ((𝐵 ∈ (SubGrp‘(Poly1‘𝑆)) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
19 | 15, 9, 10, 18 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑀(-g‘(Poly1‘𝑆))𝑁) = (𝑀(-g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
20 | 12, 19 | eqtr4d 2771 | . . . 4 ⊢ (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1‘𝑆))𝑁)) |
21 | 20 | fveq2d 6906 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))) |
22 | 21 | fveq1d 6904 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
23 | ressply1evl.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
24 | ressply1evl.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
25 | eqid 2728 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
26 | evls1subd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
27 | 23, 24, 5, 4, 6, 25, 26, 7 | ressply1evl 22296 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
28 | 27 | fveq1d 6904 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁))) |
29 | 4 | subrgring 20520 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
30 | 5 | ply1ring 22173 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
31 | 7, 29, 30 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
32 | 31 | ringgrpd 20189 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
33 | 6, 1 | grpsubcl 18983 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀𝐷𝑁) ∈ 𝐵) |
34 | 32, 9, 10, 33 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵) |
35 | 34 | fvresd 6922 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1‘𝑆)‘(𝑀𝐷𝑁))) |
36 | 28, 35 | eqtr2d 2769 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁))) |
37 | 36 | fveq1d 6904 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶)) |
38 | eqid 2728 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
39 | evls1subd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
40 | eqid 2728 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
41 | eqid 2728 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
42 | 3, 4, 5, 6, 7, 40, 41, 38 | ressply1bas2 22153 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
43 | inss2 4232 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
44 | 42, 43 | eqsstrdi 4036 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
45 | 44, 9 | sseldd 3983 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
46 | 27 | fveq1d 6904 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
47 | 9 | fvresd 6922 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
48 | 46, 47 | eqtr2d 2769 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
49 | 48 | fveq1d 6904 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
50 | 45, 49 | jca 510 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
51 | 44, 10 | sseldd 3983 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
52 | 27 | fveq1d 6904 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
53 | 10 | fvresd 6922 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
54 | 52, 53 | eqtr2d 2769 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
55 | 54 | fveq1d 6904 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
56 | 51, 55 | jca 510 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
57 | evls1subd.2 | . . . 4 ⊢ − = (-g‘𝑆) | |
58 | 25, 3, 24, 38, 26, 39, 50, 56, 16, 57 | evl1subd 22268 | . . 3 ⊢ (𝜑 → ((𝑀(-g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶)))) |
59 | 58 | simprd 494 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(-g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
60 | 22, 37, 59 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ↾ cres 5684 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 ↾s cress 17216 Grpcgrp 18897 -gcsg 18899 SubGrpcsubg 19082 Ringcrg 20180 CRingccrg 20181 SubRingcsubrg 20513 PwSer1cps1 22101 Poly1cpl1 22103 evalSub1 ces1 22239 eval1ce1 22240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-ofr 7692 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-rhm 20418 df-subrng 20490 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21849 df-mvr 21850 df-mpl 21851 df-opsr 21853 df-evls 22025 df-evl 22026 df-psr1 22106 df-vr1 22107 df-ply1 22108 df-coe1 22109 df-evls1 22241 df-evl1 22242 |
This theorem is referenced by: irredminply 33417 |
Copyright terms: Public domain | W3C validator |