Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1subd Structured version   Visualization version   GIF version

Theorem evls1subd 33289
Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ressply1evl.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl.k 𝐾 = (Base‘𝑆)
ressply1evl.w 𝑊 = (Poly1𝑈)
ressply1evl.u 𝑈 = (𝑆s 𝑅)
ressply1evl.b 𝐵 = (Base‘𝑊)
evls1subd.1 𝐷 = (-g𝑊)
evls1subd.2 = (-g𝑆)
evls1subd.s (𝜑𝑆 ∈ CRing)
evls1subd.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1subd.m (𝜑𝑀𝐵)
evls1subd.n (𝜑𝑁𝐵)
evls1subd.y (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1subd (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1subd
StepHypRef Expression
1 evls1subd.1 . . . . . . 7 𝐷 = (-g𝑊)
21oveqi 7439 . . . . . 6 (𝑀𝐷𝑁) = (𝑀(-g𝑊)𝑁)
3 eqid 2728 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
4 ressply1evl.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
5 ressply1evl.w . . . . . . 7 𝑊 = (Poly1𝑈)
6 ressply1evl.b . . . . . . 7 𝐵 = (Base‘𝑊)
7 evls1subd.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 eqid 2728 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
9 evls1subd.m . . . . . . 7 (𝜑𝑀𝐵)
10 evls1subd.n . . . . . . 7 (𝜑𝑁𝐵)
113, 4, 5, 6, 7, 8, 9, 10ressply1sub 33288 . . . . . 6 (𝜑 → (𝑀(-g𝑊)𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
122, 11eqtrid 2780 . . . . 5 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
133, 4, 5, 6subrgply1 22158 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1𝑆)))
14 subrgsubg 20523 . . . . . . 7 (𝐵 ∈ (SubRing‘(Poly1𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1𝑆)))
157, 13, 143syl 18 . . . . . 6 (𝜑𝐵 ∈ (SubGrp‘(Poly1𝑆)))
16 eqid 2728 . . . . . . 7 (-g‘(Poly1𝑆)) = (-g‘(Poly1𝑆))
17 eqid 2728 . . . . . . 7 (-g‘((Poly1𝑆) ↾s 𝐵)) = (-g‘((Poly1𝑆) ↾s 𝐵))
1816, 8, 17subgsub 19100 . . . . . 6 ((𝐵 ∈ (SubGrp‘(Poly1𝑆)) ∧ 𝑀𝐵𝑁𝐵) → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
1915, 9, 10, 18syl3anc 1368 . . . . 5 (𝜑 → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
2012, 19eqtr4d 2771 . . . 4 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1𝑆))𝑁))
2120fveq2d 6906 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁)))
2221fveq1d 6904 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶))
23 ressply1evl.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
24 ressply1evl.k . . . . . 6 𝐾 = (Base‘𝑆)
25 eqid 2728 . . . . . 6 (eval1𝑆) = (eval1𝑆)
26 evls1subd.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2723, 24, 5, 4, 6, 25, 26, 7ressply1evl 22296 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2827fveq1d 6904 . . . 4 (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)))
294subrgring 20520 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
305ply1ring 22173 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
317, 29, 303syl 18 . . . . . . 7 (𝜑𝑊 ∈ Ring)
3231ringgrpd 20189 . . . . . 6 (𝜑𝑊 ∈ Grp)
336, 1grpsubcl 18983 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑀𝐵𝑁𝐵) → (𝑀𝐷𝑁) ∈ 𝐵)
3432, 9, 10, 33syl3anc 1368 . . . . 5 (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵)
3534fvresd 6922 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀𝐷𝑁)))
3628, 35eqtr2d 2769 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁)))
3736fveq1d 6904 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶))
38 eqid 2728 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
39 evls1subd.y . . . 4 (𝜑𝐶𝐾)
40 eqid 2728 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
41 eqid 2728 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
423, 4, 5, 6, 7, 40, 41, 38ressply1bas2 22153 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
43 inss2 4232 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4442, 43eqsstrdi 4036 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4544, 9sseldd 3983 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4627fveq1d 6904 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
479fvresd 6922 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4846, 47eqtr2d 2769 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4948fveq1d 6904 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
5045, 49jca 510 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
5144, 10sseldd 3983 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
5227fveq1d 6904 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
5310fvresd 6922 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5452, 53eqtr2d 2769 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5554fveq1d 6904 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5651, 55jca 510 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
57 evls1subd.2 . . . 4 = (-g𝑆)
5825, 3, 24, 38, 26, 39, 50, 56, 16, 57evl1subd 22268 . . 3 (𝜑 → ((𝑀(-g‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶))))
5958simprd 494 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
6022, 37, 593eqtr3d 2776 1 (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cin 3948  cres 5684  cfv 6553  (class class class)co 7426  Basecbs 17187  s cress 17216  Grpcgrp 18897  -gcsg 18899  SubGrpcsubg 19082  Ringcrg 20180  CRingccrg 20181  SubRingcsubrg 20513  PwSer1cps1 22101  Poly1cpl1 22103   evalSub1 ces1 22239  eval1ce1 22240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-0g 17430  df-gsum 17431  df-prds 17436  df-pws 17438  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-ghm 19175  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-lmod 20752  df-lss 20823  df-lsp 20863  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21849  df-mvr 21850  df-mpl 21851  df-opsr 21853  df-evls 22025  df-evl 22026  df-psr1 22106  df-vr1 22107  df-ply1 22108  df-coe1 22109  df-evls1 22241  df-evl1 22242
This theorem is referenced by:  irredminply  33417
  Copyright terms: Public domain W3C validator