Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1subd Structured version   Visualization version   GIF version

Theorem evls1subd 33548
Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
ressply1evl.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl.k 𝐾 = (Base‘𝑆)
ressply1evl.w 𝑊 = (Poly1𝑈)
ressply1evl.u 𝑈 = (𝑆s 𝑅)
ressply1evl.b 𝐵 = (Base‘𝑊)
evls1subd.1 𝐷 = (-g𝑊)
evls1subd.2 = (-g𝑆)
evls1subd.s (𝜑𝑆 ∈ CRing)
evls1subd.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1subd.m (𝜑𝑀𝐵)
evls1subd.n (𝜑𝑁𝐵)
evls1subd.y (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1subd (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1subd
StepHypRef Expression
1 evls1subd.1 . . . . . . 7 𝐷 = (-g𝑊)
21oveqi 7403 . . . . . 6 (𝑀𝐷𝑁) = (𝑀(-g𝑊)𝑁)
3 eqid 2730 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
4 ressply1evl.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
5 ressply1evl.w . . . . . . 7 𝑊 = (Poly1𝑈)
6 ressply1evl.b . . . . . . 7 𝐵 = (Base‘𝑊)
7 evls1subd.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 eqid 2730 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
9 evls1subd.m . . . . . . 7 (𝜑𝑀𝐵)
10 evls1subd.n . . . . . . 7 (𝜑𝑁𝐵)
113, 4, 5, 6, 7, 8, 9, 10ressply1sub 33546 . . . . . 6 (𝜑 → (𝑀(-g𝑊)𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
122, 11eqtrid 2777 . . . . 5 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
133, 4, 5, 6subrgply1 22124 . . . . . . 7 (𝑅 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubRing‘(Poly1𝑆)))
14 subrgsubg 20493 . . . . . . 7 (𝐵 ∈ (SubRing‘(Poly1𝑆)) → 𝐵 ∈ (SubGrp‘(Poly1𝑆)))
157, 13, 143syl 18 . . . . . 6 (𝜑𝐵 ∈ (SubGrp‘(Poly1𝑆)))
16 eqid 2730 . . . . . . 7 (-g‘(Poly1𝑆)) = (-g‘(Poly1𝑆))
17 eqid 2730 . . . . . . 7 (-g‘((Poly1𝑆) ↾s 𝐵)) = (-g‘((Poly1𝑆) ↾s 𝐵))
1816, 8, 17subgsub 19077 . . . . . 6 ((𝐵 ∈ (SubGrp‘(Poly1𝑆)) ∧ 𝑀𝐵𝑁𝐵) → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
1915, 9, 10, 18syl3anc 1373 . . . . 5 (𝜑 → (𝑀(-g‘(Poly1𝑆))𝑁) = (𝑀(-g‘((Poly1𝑆) ↾s 𝐵))𝑁))
2012, 19eqtr4d 2768 . . . 4 (𝜑 → (𝑀𝐷𝑁) = (𝑀(-g‘(Poly1𝑆))𝑁))
2120fveq2d 6865 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁)))
2221fveq1d 6863 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶))
23 ressply1evl.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
24 ressply1evl.k . . . . . 6 𝐾 = (Base‘𝑆)
25 eqid 2730 . . . . . 6 (eval1𝑆) = (eval1𝑆)
26 evls1subd.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2723, 24, 5, 4, 6, 25, 26, 7ressply1evl 22264 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2827fveq1d 6863 . . . 4 (𝜑 → (𝑄‘(𝑀𝐷𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)))
294subrgring 20490 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
305ply1ring 22139 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
317, 29, 303syl 18 . . . . . . 7 (𝜑𝑊 ∈ Ring)
3231ringgrpd 20158 . . . . . 6 (𝜑𝑊 ∈ Grp)
336, 1grpsubcl 18959 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑀𝐵𝑁𝐵) → (𝑀𝐷𝑁) ∈ 𝐵)
3432, 9, 10, 33syl3anc 1373 . . . . 5 (𝜑 → (𝑀𝐷𝑁) ∈ 𝐵)
3534fvresd 6881 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀𝐷𝑁)) = ((eval1𝑆)‘(𝑀𝐷𝑁)))
3628, 35eqtr2d 2766 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀𝐷𝑁)) = (𝑄‘(𝑀𝐷𝑁)))
3736fveq1d 6863 . 2 (𝜑 → (((eval1𝑆)‘(𝑀𝐷𝑁))‘𝐶) = ((𝑄‘(𝑀𝐷𝑁))‘𝐶))
38 eqid 2730 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
39 evls1subd.y . . . 4 (𝜑𝐶𝐾)
40 eqid 2730 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
41 eqid 2730 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
423, 4, 5, 6, 7, 40, 41, 38ressply1bas2 22119 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
43 inss2 4204 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4442, 43eqsstrdi 3994 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4544, 9sseldd 3950 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4627fveq1d 6863 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
479fvresd 6881 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4846, 47eqtr2d 2766 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4948fveq1d 6863 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
5045, 49jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
5144, 10sseldd 3950 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
5227fveq1d 6863 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
5310fvresd 6881 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5452, 53eqtr2d 2766 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5554fveq1d 6863 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5651, 55jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
57 evls1subd.2 . . . 4 = (-g𝑆)
5825, 3, 24, 38, 26, 39, 50, 56, 16, 57evl1subd 22236 . . 3 (𝜑 → ((𝑀(-g‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶))))
5958simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(-g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
6022, 37, 593eqtr3d 2773 1 (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Grpcgrp 18872  -gcsg 18874  SubGrpcsubg 19059  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485  PwSer1cps1 22066  Poly1cpl1 22068   evalSub1 ces1 22207  eval1ce1 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210
This theorem is referenced by:  irredminply  33713  2sqr3minply  33777
  Copyright terms: Public domain W3C validator