Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglbcN | Structured version Visualization version GIF version |
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihglbc.b | ⊢ 𝐵 = (Base‘𝐾) |
dihglbc.g | ⊢ 𝐺 = (glb‘𝐾) |
dihglbc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihglbc.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihglbc.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
dihglbcN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ ¬ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglbc.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihglbc.g | . 2 ⊢ 𝐺 = (glb‘𝐾) | |
3 | dihglbc.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihglbc.i | . 2 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
5 | dihglbc.l | . 2 ⊢ ≤ = (le‘𝐾) | |
6 | eqid 2739 | . 2 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2739 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2739 | . 2 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
9 | eqid 2739 | . 2 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
10 | eqid 2739 | . 2 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
11 | eqid 2739 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
12 | eqid 2739 | . 2 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
13 | eqid 2739 | . 2 ⊢ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑞) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑞) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | dihglbcpreN 39220 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ ¬ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ⊆ wss 3884 ∅c0 4254 ∩ ciin 4922 class class class wbr 5070 ‘cfv 6415 ℩crio 7208 Basecbs 16815 lecple 16870 occoc 16871 glbcglb 17918 joincjn 17919 meetcmee 17920 Atomscatm 37183 HLchlt 37270 LHypclh 37904 LTrncltrn 38021 trLctrl 38078 TEndoctendo 38672 DIsoHcdih 39148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-riotaBAD 36873 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-tpos 8010 df-undef 8057 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-0g 17044 df-proset 17903 df-poset 17921 df-plt 17938 df-lub 17954 df-glb 17955 df-join 17956 df-meet 17957 df-p0 18033 df-p1 18034 df-lat 18040 df-clat 18107 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-cntz 18813 df-lsm 19131 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-oppr 19752 df-dvdsr 19773 df-unit 19774 df-invr 19804 df-dvr 19815 df-drng 19883 df-lmod 20015 df-lss 20084 df-lsp 20124 df-lvec 20255 df-oposet 37096 df-ol 37098 df-oml 37099 df-covers 37186 df-ats 37187 df-atl 37218 df-cvlat 37242 df-hlat 37271 df-llines 37418 df-lplanes 37419 df-lvols 37420 df-lines 37421 df-psubsp 37423 df-pmap 37424 df-padd 37716 df-lhyp 37908 df-laut 37909 df-ldil 38024 df-ltrn 38025 df-trl 38079 df-tendo 38675 df-edring 38677 df-disoa 38949 df-dvech 38999 df-dib 39059 df-dic 39093 df-dih 39149 |
This theorem is referenced by: dihmeetcN 39222 |
Copyright terms: Public domain | W3C validator |