![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lineval | Structured version Visualization version GIF version |
Description: A term of the form 𝑥 − 𝐶 evaluated for 𝑥 = 𝑉 results in 𝑉 − 𝐶 (part of ply1remlem 24459). (Contributed by AV, 3-Jul-2019.) |
Ref | Expression |
---|---|
linply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
linply1.b | ⊢ 𝐵 = (Base‘𝑃) |
linply1.k | ⊢ 𝐾 = (Base‘𝑅) |
linply1.x | ⊢ 𝑋 = (var1‘𝑅) |
linply1.m | ⊢ − = (-g‘𝑃) |
linply1.a | ⊢ 𝐴 = (algSc‘𝑃) |
linply1.g | ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) |
linply1.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
lineval.o | ⊢ 𝑂 = (eval1‘𝑅) |
lineval.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
lineval.v | ⊢ (𝜑 → 𝑉 ∈ 𝐾) |
Ref | Expression |
---|---|
lineval | ⊢ (𝜑 → ((𝑂‘𝐺)‘𝑉) = (𝑉(-g‘𝑅)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linply1.g | . . . 4 ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) | |
2 | 1 | fveq2i 6502 | . . 3 ⊢ (𝑂‘𝐺) = (𝑂‘(𝑋 − (𝐴‘𝐶))) |
3 | 2 | fveq1i 6500 | . 2 ⊢ ((𝑂‘𝐺)‘𝑉) = ((𝑂‘(𝑋 − (𝐴‘𝐶)))‘𝑉) |
4 | lineval.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
5 | linply1.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | linply1.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
7 | linply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
8 | lineval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
9 | lineval.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐾) | |
10 | linply1.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
11 | 4, 10, 6, 5, 7, 8, 9 | evl1vard 20202 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘𝑉) = 𝑉)) |
12 | linply1.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑃) | |
13 | linply1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
14 | 4, 5, 6, 12, 7, 8, 13, 9 | evl1scad 20200 | . . . 4 ⊢ (𝜑 → ((𝐴‘𝐶) ∈ 𝐵 ∧ ((𝑂‘(𝐴‘𝐶))‘𝑉) = 𝐶)) |
15 | linply1.m | . . . 4 ⊢ − = (-g‘𝑃) | |
16 | eqid 2779 | . . . 4 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
17 | 4, 5, 6, 7, 8, 9, 11, 14, 15, 16 | evl1subd 20207 | . . 3 ⊢ (𝜑 → ((𝑋 − (𝐴‘𝐶)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 − (𝐴‘𝐶)))‘𝑉) = (𝑉(-g‘𝑅)𝐶))) |
18 | 17 | simprd 488 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑋 − (𝐴‘𝐶)))‘𝑉) = (𝑉(-g‘𝑅)𝐶)) |
19 | 3, 18 | syl5eq 2827 | 1 ⊢ (𝜑 → ((𝑂‘𝐺)‘𝑉) = (𝑉(-g‘𝑅)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 -gcsg 17893 CRingccrg 19021 algSccascl 19805 var1cv1 20047 Poly1cpl1 20048 eval1ce1 20180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-ofr 7228 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-sup 8701 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-hom 16445 df-cco 16446 df-0g 16571 df-gsum 16572 df-prds 16577 df-pws 16579 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-submnd 17804 df-grp 17894 df-minusg 17895 df-sbg 17896 df-mulg 18012 df-subg 18060 df-ghm 18127 df-cntz 18218 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-srg 18979 df-ring 19022 df-cring 19023 df-rnghom 19190 df-subrg 19256 df-lmod 19358 df-lss 19426 df-lsp 19466 df-assa 19806 df-asp 19807 df-ascl 19808 df-psr 19850 df-mvr 19851 df-mpl 19852 df-opsr 19854 df-evls 19999 df-evl 20000 df-psr1 20051 df-vr1 20052 df-ply1 20053 df-evl1 20182 |
This theorem is referenced by: linevalexample 43815 |
Copyright terms: Public domain | W3C validator |