![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2pmfzmap | Structured version Visualization version GIF version |
Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019.) |
Ref | Expression |
---|---|
m2pmfzmap.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2pmfzmap.b | ⊢ 𝐵 = (Base‘𝐴) |
m2pmfzmap.p | ⊢ 𝑃 = (Poly1‘𝑅) |
m2pmfzmap.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
m2pmfzmap.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
m2pmfzmap | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑇‘(𝑏‘𝐼)) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → 𝑁 ∈ Fin) | |
2 | simpl2 1189 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → 𝑅 ∈ Ring) | |
3 | elmapi 8840 | . . . 4 ⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) → 𝑏:(0...𝑆)⟶𝐵) | |
4 | 3 | ffvelcdmda 7077 | . . 3 ⊢ ((𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆)) → (𝑏‘𝐼) ∈ 𝐵) |
5 | 4 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑏‘𝐼) ∈ 𝐵) |
6 | m2pmfzmap.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
7 | m2pmfzmap.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | m2pmfzmap.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
9 | m2pmfzmap.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | m2pmfzmap.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
11 | 6, 7, 8, 9, 10 | mat2pmatbas 22552 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝐼) ∈ 𝐵) → (𝑇‘(𝑏‘𝐼)) ∈ (Base‘𝑌)) |
12 | 1, 2, 5, 11 | syl3anc 1368 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑇‘(𝑏‘𝐼)) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 Fincfn 8936 0cc0 11107 ℕ0cn0 12470 ...cfz 13482 Basecbs 17145 Ringcrg 20130 Poly1cpl1 22021 Mat cmat 22231 matToPolyMat cmat2pmat 22530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-ofr 7665 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-fzo 13626 df-seq 13965 df-hash 14289 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17388 df-gsum 17389 df-prds 17394 df-pws 17396 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18988 df-subg 19042 df-ghm 19131 df-cntz 19225 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-ring 20132 df-subrng 20438 df-subrg 20463 df-lmod 20700 df-lss 20771 df-sra 21013 df-rgmod 21014 df-dsmm 21597 df-frlm 21612 df-ascl 21720 df-psr 21773 df-mpl 21775 df-opsr 21777 df-psr1 22024 df-ply1 22026 df-mat 22232 df-mat2pmat 22533 |
This theorem is referenced by: m2pmfzgsumcl 22574 chfacfisf 22680 chfacfpmmulgsum2 22691 cpmadugsumlemB 22700 cpmadugsumlemC 22701 cpmadugsumlemF 22702 |
Copyright terms: Public domain | W3C validator |