MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2pmfzmap Structured version   Visualization version   GIF version

Theorem m2pmfzmap 22610
Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019.)
Hypotheses
Ref Expression
m2pmfzmap.a 𝐴 = (𝑁 Mat 𝑅)
m2pmfzmap.b 𝐵 = (Base‘𝐴)
m2pmfzmap.p 𝑃 = (Poly1𝑅)
m2pmfzmap.y 𝑌 = (𝑁 Mat 𝑃)
m2pmfzmap.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2pmfzmap (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑇‘(𝑏𝐼)) ∈ (Base‘𝑌))

Proof of Theorem m2pmfzmap
StepHypRef Expression
1 simpl1 1192 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → 𝑁 ∈ Fin)
2 simpl2 1193 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → 𝑅 ∈ Ring)
3 elmapi 8799 . . . 4 (𝑏 ∈ (𝐵m (0...𝑆)) → 𝑏:(0...𝑆)⟶𝐵)
43ffvelcdmda 7038 . . 3 ((𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆)) → (𝑏𝐼) ∈ 𝐵)
54adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑏𝐼) ∈ 𝐵)
6 m2pmfzmap.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
7 m2pmfzmap.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 m2pmfzmap.b . . 3 𝐵 = (Base‘𝐴)
9 m2pmfzmap.p . . 3 𝑃 = (Poly1𝑅)
10 m2pmfzmap.y . . 3 𝑌 = (𝑁 Mat 𝑃)
116, 7, 8, 9, 10mat2pmatbas 22589 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝐼) ∈ 𝐵) → (𝑇‘(𝑏𝐼)) ∈ (Base‘𝑌))
121, 2, 5, 11syl3anc 1373 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑆)) ∧ 𝐼 ∈ (0...𝑆))) → (𝑇‘(𝑏𝐼)) ∈ (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  0cn0 12418  ...cfz 13444  Basecbs 17155  Ringcrg 20118  Poly1cpl1 22037   Mat cmat 22270   matToPolyMat cmat2pmat 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-dsmm 21617  df-frlm 21632  df-ascl 21740  df-psr 21794  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-ply1 22042  df-mat 22271  df-mat2pmat 22570
This theorem is referenced by:  m2pmfzgsumcl  22611  chfacfisf  22717  chfacfpmmulgsum2  22728  cpmadugsumlemB  22737  cpmadugsumlemC  22738  cpmadugsumlemF  22739
  Copyright terms: Public domain W3C validator