Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1scl | Structured version Visualization version GIF version |
Description: A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
deg1sclle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1sclle.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1sclle.k | ⊢ 𝐾 = (Base‘𝑅) |
deg1sclle.a | ⊢ 𝐴 = (algSc‘𝑃) |
deg1scl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
deg1scl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1sclle.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1sclle.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1sclle.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | deg1sclle.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | 1, 2, 3, 4 | deg1sclle 25182 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐷‘(𝐴‘𝐹)) ≤ 0) |
6 | 5 | 3adant3 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) ≤ 0) |
7 | simp1 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Ring) | |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
9 | 2, 4, 3, 8 | ply1sclcl 21367 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) ∈ (Base‘𝑃)) |
10 | 9 | 3adant3 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐴‘𝐹) ∈ (Base‘𝑃)) |
11 | deg1scl.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
12 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
13 | 2, 4, 11, 12, 3 | ply1scln0 21372 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐴‘𝐹) ≠ (0g‘𝑃)) |
14 | 1, 2, 12, 8 | deg1nn0cl 25158 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐴‘𝐹) ∈ (Base‘𝑃) ∧ (𝐴‘𝐹) ≠ (0g‘𝑃)) → (𝐷‘(𝐴‘𝐹)) ∈ ℕ0) |
15 | 7, 10, 13, 14 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) ∈ ℕ0) |
16 | nn0le0eq0 12191 | . . 3 ⊢ ((𝐷‘(𝐴‘𝐹)) ∈ ℕ0 → ((𝐷‘(𝐴‘𝐹)) ≤ 0 ↔ (𝐷‘(𝐴‘𝐹)) = 0)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ((𝐷‘(𝐴‘𝐹)) ≤ 0 ↔ (𝐷‘(𝐴‘𝐹)) = 0)) |
18 | 6, 17 | mpbid 231 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 0cc0 10802 ≤ cle 10941 ℕ0cn0 12163 Basecbs 16840 0gc0g 17067 Ringcrg 19698 algSccascl 20969 Poly1cpl1 21258 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-cnfld 20511 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: lgsqrlem4 26402 mon1pid 40946 |
Copyright terms: Public domain | W3C validator |