Proof of Theorem dchrvmasum2if
Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . . . 6
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
2 | | rpvmasum.g |
. . . . . . . . 9
⊢ 𝐺 = (DChr‘𝑁) |
3 | | rpvmasum.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
4 | | rpvmasum.d |
. . . . . . . . 9
⊢ 𝐷 = (Base‘𝐺) |
5 | | rpvmasum.l |
. . . . . . . . 9
⊢ 𝐿 = (ℤRHom‘𝑍) |
6 | | dchrisum.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
7 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) |
8 | | elfzelz 13256 |
. . . . . . . . . 10
⊢ (𝑑 ∈
(1...(⌊‘𝐴))
→ 𝑑 ∈
ℤ) |
9 | 8 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ) |
10 | 2, 3, 4, 5, 7, 9 | dchrzrhcl 26393 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑑)) ∈ ℂ) |
11 | | elfznn 13285 |
. . . . . . . . . . 11
⊢ (𝑑 ∈
(1...(⌊‘𝐴))
→ 𝑑 ∈
ℕ) |
12 | 11 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ) |
13 | | mucl 26290 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℤ) |
14 | 13 | zred 12426 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℝ) |
15 | | nndivre 12014 |
. . . . . . . . . . 11
⊢
(((μ‘𝑑)
∈ ℝ ∧ 𝑑
∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ) |
16 | 14, 15 | mpancom 685 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ℕ →
((μ‘𝑑) / 𝑑) ∈
ℝ) |
17 | 12, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ) |
18 | 17 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ) |
19 | 10, 18 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ) |
20 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin) |
21 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋 ∈ 𝐷) |
22 | | elfzelz 13256 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℤ) |
23 | 22 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ) |
24 | 2, 3, 4, 5, 21, 23 | dchrzrhcl 26393 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
25 | | elfznn 13285 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑))) → 𝑚 ∈
ℕ) |
26 | 25 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ) |
27 | 26 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+) |
28 | 27 | relogcld 25778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ) |
29 | 28, 26 | nndivred 12027 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ) |
30 | 29 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ) |
31 | 24, 30 | mulcld 10995 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ) |
32 | 20, 31 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ) |
33 | 19, 32 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) ∈ ℂ) |
34 | | dchrvmasum.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
35 | 11 | nnrpd 12770 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈
(1...(⌊‘𝐴))
→ 𝑑 ∈
ℝ+) |
36 | | rpdivcl 12755 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝐴 / 𝑑) ∈
ℝ+) |
37 | 34, 35, 36 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈
ℝ+) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / 𝑑) ∈
ℝ+) |
39 | 38, 27 | rpdivcld 12789 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈
ℝ+) |
40 | 39 | relogcld 25778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ) |
41 | 40, 26 | nndivred 12027 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ) |
42 | 41 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ) |
43 | 24, 42 | mulcld 10995 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ) |
44 | 20, 43 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ) |
45 | 19, 44 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) ∈ ℂ) |
46 | 1, 33, 45 | fsumadd 15452 |
. . . . 5
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
47 | 38, 27 | relogdivd 25781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) = ((log‘(𝐴 / 𝑑)) − (log‘𝑚))) |
48 | 47 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚)))) |
49 | 28 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ) |
50 | 37 | relogcld 25778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℝ) |
51 | 50 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℂ) |
52 | 51 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) ∈ ℂ) |
53 | 49, 52 | pncan3d 11335 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))) = (log‘(𝐴 / 𝑑))) |
54 | 48, 53 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) = ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚)))) |
55 | 54 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚)) |
56 | 40 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ) |
57 | 26 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ) |
58 | 26 | nnne0d 12023 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0) |
59 | 49, 56, 57, 58 | divdird 11789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) |
60 | 55, 59 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) |
61 | 60 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = ((𝑋‘(𝐿‘𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
62 | 24, 30, 42 | adddid 10999 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
63 | 61, 62 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
64 | 63 | sumeq2dv 15415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
65 | 20, 31, 43 | fsumadd 15452 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
66 | 64, 65 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
67 | 66 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
68 | 19, 32, 44 | adddid 10999 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = ((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
69 | 67, 68 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = ((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
70 | 69 | sumeq2dv 15415 |
. . . . 5
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
71 | | rpvmasum.a |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
72 | | rpvmasum.1 |
. . . . . . 7
⊢ 1 =
(0g‘𝐺) |
73 | | dchrisum.n1 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≠ 1 ) |
74 | 3, 5, 71, 2, 4, 72, 6, 73, 34 | dchrvmasumlem1 26643 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |
75 | | dchrvmasum2.2 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ 𝐴) |
76 | 3, 5, 71, 2, 4, 72, 6, 73, 34, 75 | dchrvmasum2lem 26644 |
. . . . . 6
⊢ (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) |
77 | 74, 76 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))) |
78 | 46, 70, 77 | 3eqtr4rd 2789 |
. . . 4
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))) |
79 | 78 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))) |
80 | | iftrue 4465 |
. . . . 5
⊢ (𝜓 → if(𝜓, (log‘𝐴), 0) = (log‘𝐴)) |
81 | 80 | oveq2d 7291 |
. . . 4
⊢ (𝜓 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴))) |
82 | 81 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴))) |
83 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = (𝐴 / 𝑑)) |
84 | 83 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘(𝐴 / 𝑑))) |
85 | 84 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘(𝐴 / 𝑑)) / 𝑚)) |
86 | 85 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜓 → ((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) |
87 | 86 | sumeq2sdv 15416 |
. . . . . 6
⊢ (𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) |
88 | 87 | oveq2d 7291 |
. . . . 5
⊢ (𝜓 → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))) |
89 | 88 | sumeq2sdv 15416 |
. . . 4
⊢ (𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))) |
90 | 89 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))) |
91 | 79, 82, 90 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)))) |
92 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋 ∈ 𝐷) |
93 | | elfzelz 13256 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℤ) |
94 | 93 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ) |
95 | 2, 3, 4, 5, 92, 94 | dchrzrhcl 26393 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
96 | | elfznn 13285 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
97 | 96 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) |
98 | | vmacl 26267 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
99 | | nndivre 12014 |
. . . . . . . . . 10
⊢
(((Λ‘𝑛)
∈ ℝ ∧ 𝑛
∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
100 | 98, 99 | mpancom 685 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
((Λ‘𝑛) / 𝑛) ∈
ℝ) |
101 | 100 | recnd 11003 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
((Λ‘𝑛) / 𝑛) ∈
ℂ) |
102 | 97, 101 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ) |
103 | 95, 102 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
104 | 1, 103 | fsumcl 15445 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
105 | 104 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝜓) → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
106 | 105 | addid1d 11175 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
107 | | iffalse 4468 |
. . . . 5
⊢ (¬
𝜓 → if(𝜓, (log‘𝐴), 0) = 0) |
108 | 107 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, (log‘𝐴), 0) = 0) |
109 | 108 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0)) |
110 | | iffalse 4468 |
. . . . . . . . . 10
⊢ (¬
𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = 𝑚) |
111 | 110 | fveq2d 6778 |
. . . . . . . . 9
⊢ (¬
𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘𝑚)) |
112 | 111 | oveq1d 7290 |
. . . . . . . 8
⊢ (¬
𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘𝑚) / 𝑚)) |
113 | 112 | oveq2d 7291 |
. . . . . . 7
⊢ (¬
𝜓 → ((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) |
114 | 113 | sumeq2sdv 15416 |
. . . . . 6
⊢ (¬
𝜓 → Σ𝑚 ∈
(1...(⌊‘(𝐴 /
𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) |
115 | 114 | oveq2d 7291 |
. . . . 5
⊢ (¬
𝜓 → (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |
116 | 115 | sumeq2sdv 15416 |
. . . 4
⊢ (¬
𝜓 → Σ𝑑 ∈
(1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) |
117 | 74 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
118 | 116, 117 | sylan9eqr 2800 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
119 | 106, 109,
118 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)))) |
120 | 91, 119 | pm2.61dan 810 |
1
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)))) |