MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2if Structured version   Visualization version   GIF version

Theorem dchrvmasum2if 26643
Description: Combine the results of dchrvmasumlem1 26641 and dchrvmasum2lem 26642 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2if (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝜓,𝑑,𝑚   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2if
StepHypRef Expression
1 fzfid 13691 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 rpvmasum.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
3 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
4 rpvmasum.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
5 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
6 dchrisum.b . . . . . . . . . 10 (𝜑𝑋𝐷)
76adantr 481 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
8 elfzelz 13255 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
98adantl 482 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
102, 3, 4, 5, 7, 9dchrzrhcl 26391 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
11 elfznn 13284 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
1211adantl 482 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
13 mucl 26288 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1413zred 12425 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
15 nndivre 12014 . . . . . . . . . . 11 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1614, 15mpancom 685 . . . . . . . . . 10 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 11004 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1910, 18mulcld 10996 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
20 fzfid 13691 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
217adantr 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
22 elfzelz 13255 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
2322adantl 482 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
242, 3, 4, 5, 21, 23dchrzrhcl 26391 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
25 elfznn 13284 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
2625adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
2726nnrpd 12769 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
2827relogcld 25776 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
2928, 26nndivred 12027 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
3029recnd 11004 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
3124, 30mulcld 10996 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3220, 31fsumcl 15443 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3319, 32mulcld 10996 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) ∈ ℂ)
34 dchrvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
3511nnrpd 12769 . . . . . . . . . . . . . . 15 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
36 rpdivcl 12754 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
3734, 35, 36syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
3837adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / 𝑑) ∈ ℝ+)
3938, 27rpdivcld 12788 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
4039relogcld 25776 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
4140, 26nndivred 12027 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
4241recnd 11004 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
4324, 42mulcld 10996 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4420, 43fsumcl 15443 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4519, 44mulcld 10996 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) ∈ ℂ)
461, 33, 45fsumadd 15450 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
4738, 27relogdivd 25779 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) = ((log‘(𝐴 / 𝑑)) − (log‘𝑚)))
4847oveq2d 7287 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))))
4928recnd 11004 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
5037relogcld 25776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℝ)
5150recnd 11004 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5251adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5349, 52pncan3d 11335 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))) = (log‘(𝐴 / 𝑑)))
5448, 53eqtr2d 2781 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) = ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))))
5554oveq1d 7286 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚))
5640recnd 11004 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
5726nncnd 11989 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
5826nnne0d 12023 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
5949, 56, 57, 58divdird 11789 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6055, 59eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6160oveq2d 7287 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6224, 30, 42adddid 11000 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6361, 62eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6463sumeq2dv 15413 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6520, 31, 43fsumadd 15450 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6664, 65eqtrd 2780 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6766oveq2d 7287 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6819, 32, 44adddid 11000 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6967, 68eqtrd 2780 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7069sumeq2dv 15413 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
71 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
72 rpvmasum.1 . . . . . . 7 1 = (0g𝐺)
73 dchrisum.n1 . . . . . . 7 (𝜑𝑋1 )
743, 5, 71, 2, 4, 72, 6, 73, 34dchrvmasumlem1 26641 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
75 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
763, 5, 71, 2, 4, 72, 6, 73, 34, 75dchrvmasum2lem 26642 . . . . . 6 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
7774, 76oveq12d 7289 . . . . 5 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7846, 70, 773eqtr4rd 2791 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
7978adantr 481 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
80 iftrue 4471 . . . . 5 (𝜓 → if(𝜓, (log‘𝐴), 0) = (log‘𝐴))
8180oveq2d 7287 . . . 4 (𝜓 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
8281adantl 482 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
83 iftrue 4471 . . . . . . . . . 10 (𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = (𝐴 / 𝑑))
8483fveq2d 6775 . . . . . . . . 9 (𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘(𝐴 / 𝑑)))
8584oveq1d 7286 . . . . . . . 8 (𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘(𝐴 / 𝑑)) / 𝑚))
8685oveq2d 7287 . . . . . . 7 (𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8786sumeq2sdv 15414 . . . . . 6 (𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8887oveq2d 7287 . . . . 5 (𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
8988sumeq2sdv 15414 . . . 4 (𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9089adantl 482 . . 3 ((𝜑𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9179, 82, 903eqtr4d 2790 . 2 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
926adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
93 elfzelz 13255 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
9493adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
952, 3, 4, 5, 92, 94dchrzrhcl 26391 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
96 elfznn 13284 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
9796adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
98 vmacl 26265 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
99 nndivre 12014 . . . . . . . . . 10 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10098, 99mpancom 685 . . . . . . . . 9 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
101100recnd 11004 . . . . . . . 8 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10297, 101syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10395, 102mulcld 10996 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1041, 103fsumcl 15443 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
105104adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝜓) → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
106105addid1d 11175 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
107 iffalse 4474 . . . . 5 𝜓 → if(𝜓, (log‘𝐴), 0) = 0)
108107adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, (log‘𝐴), 0) = 0)
109108oveq2d 7287 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0))
110 iffalse 4474 . . . . . . . . . 10 𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = 𝑚)
111110fveq2d 6775 . . . . . . . . 9 𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘𝑚))
112111oveq1d 7286 . . . . . . . 8 𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘𝑚) / 𝑚))
113112oveq2d 7287 . . . . . . 7 𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
114113sumeq2sdv 15414 . . . . . 6 𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
115114oveq2d 7287 . . . . 5 𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
116115sumeq2sdv 15414 . . . 4 𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
11774eqcomd 2746 . . . 4 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
118116, 117sylan9eqr 2802 . . 3 ((𝜑 ∧ ¬ 𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
119106, 109, 1183eqtr4d 2790 . 2 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
12091, 119pm2.61dan 810 1 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  ifcif 4465   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  cle 11011  cmin 11205   / cdiv 11632  cn 11973  cz 12319  +crp 12729  ...cfz 13238  cfl 13508  Σcsu 15395  Basecbs 16910  0gc0g 17148  ℤRHomczrh 20699  ℤ/nczn 20702  logclog 25708  Λcvma 26239  μcmu 26242  DChrcdchr 26378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-ec 8483  df-qs 8487  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-pi 15780  df-dvds 15962  df-gcd 16200  df-prm 16375  df-pc 16536  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-qus 17218  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-nsg 18751  df-eqg 18752  df-ghm 18830  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-rnghom 19957  df-subrg 20020  df-lmod 20123  df-lss 20192  df-lsp 20232  df-sra 20432  df-rgmod 20433  df-lidl 20434  df-rsp 20435  df-2idl 20501  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-zring 20669  df-zrh 20703  df-zn 20706  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710  df-vma 26245  df-mu 26248  df-dchr 26379
This theorem is referenced by:  dchrvmasumiflem2  26648
  Copyright terms: Public domain W3C validator