MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamp1 Structured version   Visualization version   GIF version

Theorem lgamp1 26086
Description: The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgamp1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴)))

Proof of Theorem lgamp1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
2 id 22 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
31, 2lgamcvg2 26084 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) ⇝ (log Γ‘(𝐴 + 1)))
41, 2lgamcvg 26083 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
5 climuni 15164 . 2 ((seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) ⇝ (log Γ‘(𝐴 + 1)) ∧ seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴)))
63, 4, 5syl2anc 587 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cdif 3881   class class class wbr 5070  cmpt 5152  cfv 6415  (class class class)co 7252  cc 10775  1c1 10778   + caddc 10780   · cmul 10782  cmin 11110   / cdiv 11537  cn 11878  cz 12224  seqcseq 13624  cli 15096  logclog 25590  log Γclgam 26045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-inf2 9304  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854  ax-pre-sup 10855  ax-addf 10856  ax-mulf 10857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-2o 8245  df-oadd 8248  df-er 8433  df-map 8552  df-pm 8553  df-ixp 8621  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-fi 9075  df-sup 9106  df-inf 9107  df-oi 9174  df-dju 9565  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-div 11538  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-uz 12487  df-q 12593  df-rp 12635  df-xneg 12752  df-xadd 12753  df-xmul 12754  df-ioo 12987  df-ioc 12988  df-ico 12989  df-icc 12990  df-fz 13144  df-fzo 13287  df-fl 13415  df-mod 13493  df-seq 13625  df-exp 13686  df-fac 13891  df-bc 13920  df-hash 13948  df-shft 14681  df-cj 14713  df-re 14714  df-im 14715  df-sqrt 14849  df-abs 14850  df-limsup 15083  df-clim 15100  df-rlim 15101  df-sum 15301  df-ef 15680  df-sin 15682  df-cos 15683  df-tan 15684  df-pi 15685  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-starv 16878  df-sca 16879  df-vsca 16880  df-ip 16881  df-tset 16882  df-ple 16883  df-ds 16885  df-unif 16886  df-hom 16887  df-cco 16888  df-rest 17025  df-topn 17026  df-0g 17044  df-gsum 17045  df-topgen 17046  df-pt 17047  df-prds 17050  df-xrs 17105  df-qtop 17110  df-imas 17111  df-xps 17113  df-mre 17187  df-mrc 17188  df-acs 17190  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-submnd 18321  df-mulg 18591  df-cntz 18813  df-cmn 19278  df-psmet 20477  df-xmet 20478  df-met 20479  df-bl 20480  df-mopn 20481  df-fbas 20482  df-fg 20483  df-cnfld 20486  df-top 21926  df-topon 21943  df-topsp 21965  df-bases 21979  df-cld 22053  df-ntr 22054  df-cls 22055  df-nei 22132  df-lp 22170  df-perf 22171  df-cn 22261  df-cnp 22262  df-haus 22349  df-cmp 22421  df-tx 22596  df-hmeo 22789  df-fil 22880  df-fm 22972  df-flim 22973  df-flf 22974  df-xms 23356  df-ms 23357  df-tms 23358  df-cncf 23922  df-limc 24910  df-dv 24911  df-ulm 25416  df-log 25592  df-cxp 25593  df-lgam 26048
This theorem is referenced by:  gamp1  26087
  Copyright terms: Public domain W3C validator