![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh1dimat | Structured version Visualization version GIF version |
Description: There exists an atom. (Contributed by NM, 25-Apr-2015.) |
Ref | Expression |
---|---|
dvh4dimat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh4dimat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh1dimat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dvh1dimat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
dvh1dimat | ⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh4dimat.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2733 | . . 3 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
3 | eqid 2733 | . . 3 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
4 | dvh4dimat.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dvh1dimat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
6 | dvh1dimat.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 1, 2, 3, 4, 5, 6 | dihat 41279 | . 2 ⊢ (𝜑 → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘𝑊)) ∈ 𝐴) |
8 | elex2 2814 | . 2 ⊢ ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘𝑊)) ∈ 𝐴 → ∃𝑠 𝑠 ∈ 𝐴) | |
9 | 7, 8 | syl 17 | 1 ⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ∃wex 1774 ∈ wcel 2104 ‘cfv 6558 occoc 17295 LSAtomsclsa 38917 HLchlt 39293 LHypclh 39928 DVecHcdvh 41022 DIsoHcdih 41172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-riotaBAD 38896 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-om 7881 df-1st 8007 df-2nd 8008 df-tpos 8244 df-undef 8291 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-er 8738 df-map 8861 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-n0 12518 df-z 12605 df-uz 12870 df-fz 13538 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-sca 17303 df-vsca 17304 df-0g 17477 df-proset 18341 df-poset 18359 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18795 df-grp 18952 df-minusg 18953 df-sbg 18954 df-subg 19139 df-cntz 19333 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20156 df-ur 20185 df-ring 20238 df-oppr 20336 df-dvdsr 20359 df-unit 20360 df-invr 20390 df-dvr 20403 df-drng 20729 df-lmod 20858 df-lss 20929 df-lsp 20969 df-lvec 21101 df-lsatoms 38919 df-oposet 39119 df-ol 39121 df-oml 39122 df-covers 39209 df-ats 39210 df-atl 39241 df-cvlat 39265 df-hlat 39294 df-llines 39442 df-lplanes 39443 df-lvols 39444 df-lines 39445 df-psubsp 39447 df-pmap 39448 df-padd 39740 df-lhyp 39932 df-laut 39933 df-ldil 40048 df-ltrn 40049 df-trl 40103 df-tendo 40699 df-edring 40701 df-disoa 40973 df-dvech 41023 df-dib 41083 df-dic 41117 df-dih 41173 |
This theorem is referenced by: dvh1dim 41386 |
Copyright terms: Public domain | W3C validator |