Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5 Structured version   Visualization version   GIF version

Theorem aks6d1c5 41642
Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖   ,𝑔,𝑖   𝑔,𝐺,𝑖   𝑔,𝑋,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)

Proof of Theorem aks6d1c5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20644 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2728 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22124 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2728 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20188 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 479 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 13978 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19766 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 479 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12516 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 ovexd 7461 . . . . . . . . . . . 12 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8865 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 228 . . . . . . . . . 10 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 405 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7099 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20193 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20227 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19759 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 479 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 479 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20193 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
2928adantr 479 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 479 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . . . 12 𝑋 = (var1𝐾)
32 eqid 2728 . . . . . . . . . . . 12 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22143 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 481 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13541 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 510 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2728 . . . . . . . . . . . . . . . 16 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21444 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21386 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
42 eqid 2728 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20431 . . . . . . . . . . . . . . 15 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7099 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2728 . . . . . . . . . . . 12 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22212 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 582 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2728 . . . . . . . . . . 11 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18709 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1368 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20087 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2831 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 19057 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3143 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 19929 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2737 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2831 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7129 . . 3 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
65 eqidd 2729 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) = (0g𝐾))
66 simpr 483 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥𝑦)
6766neneqd 2942 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
68 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 ∈ (ℕ0m (0...𝐴)))
6915a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ℕ0 ∈ V)
70 ovexd 7461 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) ∈ V)
7169, 70elmapd 8865 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) ↔ 𝑥:(0...𝐴)⟶ℕ0))
7268, 71mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
73 ffn 6727 . . . . . . . . . . . . . . . . . . . 20 (𝑥:(0...𝐴)⟶ℕ0𝑥 Fn (0...𝐴))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 Fn (0...𝐴))
75 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 ∈ (ℕ0m (0...𝐴)))
7669, 70elmapd 8865 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) ↔ 𝑦:(0...𝐴)⟶ℕ0))
7775, 76mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
78 ffn 6727 . . . . . . . . . . . . . . . . . . . 20 (𝑦:(0...𝐴)⟶ℕ0𝑦 Fn (0...𝐴))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 Fn (0...𝐴))
80 eqfnfv2 7046 . . . . . . . . . . . . . . . . . . 19 ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8174, 79, 80syl2anc 582 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8281notbid 317 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8382biimpd 228 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8467, 83mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
85 ianor 979 . . . . . . . . . . . . . . 15 (¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
8684, 85sylib 217 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
87 eqidd 2729 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) = (0...𝐴))
8887notnotd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴))
8986, 88orcnd 876 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
90 rexnal 3097 . . . . . . . . . . . . 13 (∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
9189, 90sylibr 233 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
92 df-ne 2938 . . . . . . . . . . . . 13 ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ¬ (𝑥𝑧) = (𝑦𝑧))
9392rexbii 3091 . . . . . . . . . . . 12 (∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
9491, 93sylibr 233 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧))
95 simpl 481 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦))
96 simprl 769 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → 𝑧 ∈ (0...𝐴))
97 simprr 771 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (𝑥𝑧) ≠ (𝑦𝑧))
9895, 96, 97jca31 513 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)))
9971biimpd 228 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) → 𝑥:(0...𝐴)⟶ℕ0))
10068, 99mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
101100ffvelcdmda 7099 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℕ0)
102101nn0red 12571 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℝ)
10376biimpd 228 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) → 𝑦:(0...𝐴)⟶ℕ0))
10475, 103mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
105104ffvelcdmda 7099 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℕ0)
106105nn0red 12571 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℝ)
107102, 106lttri2d 11391 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))))
1082ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐾 ∈ Field)
109 aks6d1p5.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
110109ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑃 ∈ ℙ)
111 aks6d1c5.3 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
112 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
113112ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 ∈ ℕ0)
114 aks6d1c5.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝑃)
115114ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 < 𝑃)
11668ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
11775ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
118 simp-4r 782 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝐺𝑥) = (𝐺𝑦))
119 simplr 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑧 ∈ (0...𝐴))
120 simpr 483 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝑥𝑧) < (𝑦𝑧))
121108, 110, 111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120aks6d1c5lem2 41641 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
1222ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐾 ∈ Field)
123109ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑃 ∈ ℙ)
124112ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 ∈ ℕ0)
125114ad6antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 < 𝑃)
12675ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
12768ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
128 simp-4r 782 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑥) = (𝐺𝑦))
129128eqcomd 2734 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑦) = (𝐺𝑥))
130 simplr 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑧 ∈ (0...𝐴))
131 simpr 483 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝑦𝑧) < (𝑥𝑧))
132122, 123, 111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131aks6d1c5lem2 41641 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾))
133121, 132jaodan 955 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))) → (0g𝐾) ≠ (0g𝐾))
134133ex 411 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾)))
135107, 134sylbid 239 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) → (0g𝐾) ≠ (0g𝐾)))
136135imp 405 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
13798, 136syl 17 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (0g𝐾) ≠ (0g𝐾))
13894, 137rexlimddv 3158 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) ≠ (0g𝐾))
139138neneqd 2942 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ (0g𝐾) = (0g𝐾))
14065, 139pm2.65da 815 . . . . . . . 8 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ 𝑥𝑦)
141 df-ne 2938 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
142141notbii 319 . . . . . . . 8 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
143140, 142sylib 217 . . . . . . 7 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ ¬ 𝑥 = 𝑦)
144 notnotb 314 . . . . . . 7 (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
145143, 144sylibr 233 . . . . . 6 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → 𝑥 = 𝑦)
146145ex 411 . . . . 5 (((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
147146ralrimiva 3143 . . . 4 ((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) → ∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
148147ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
14964, 148jca 510 . 2 (𝜑 → (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
150 dff13 7271 . 2 (𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)) ↔ (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
151149, 150sylibr 233 1 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  Vcvv 3473   class class class wbr 5152  cmpt 5235   Fn wfn 6548  wf 6549  1-1wf1 6550  cfv 6553  (class class class)co 7426  m cmap 8851  0cc0 11146   < clt 11286  0cn0 12510  cz 12596  ...cfz 13524  cprime 16649  Basecbs 17187  +gcplusg 17240  0gc0g 17428   Σg cgsu 17429  Mndcmnd 18701  .gcmg 19030  CMndccmn 19742  mulGrpcmgp 20081  Ringcrg 20180  CRingccrg 20181   RingHom crh 20415  Fieldcfield 20632  ringczring 21379  ℤRHomczrh 21432  chrcchr 21434  algSccascl 21793  var1cv1 22102  Poly1cpl1 22103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-prm 16650  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-0g 17430  df-gsum 17431  df-prds 17436  df-pws 17438  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-ghm 19175  df-cntz 19275  df-od 19490  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-rhm 20418  df-nzr 20459  df-subrng 20490  df-subrg 20515  df-drng 20633  df-field 20634  df-lmod 20752  df-lss 20823  df-lsp 20863  df-rlreg 21237  df-domn 21238  df-idom 21239  df-cnfld 21287  df-zring 21380  df-zrh 21436  df-chr 21438  df-assa 21794  df-asp 21795  df-ascl 21796  df-psr 21849  df-mvr 21850  df-mpl 21851  df-opsr 21853  df-evls 22025  df-evl 22026  df-psr1 22106  df-vr1 22107  df-ply1 22108  df-coe1 22109  df-evl1 22242  df-mdeg 26008  df-deg1 26009  df-uc1p 26087  df-q1p 26088
This theorem is referenced by:  aks6d1c6lem3  41676
  Copyright terms: Public domain W3C validator