Step | Hyp | Ref
| Expression |
1 | | eqid 2728 |
. . . . . 6
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
2 | | aks6d1p5.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Field) |
3 | 2 | fldcrngd 20644 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ CRing) |
4 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
5 | 4 | ply1crng 22124 |
. . . . . . . . 9
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) |
6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CRing) |
7 | | eqid 2728 |
. . . . . . . . 9
⊢
(mulGrp‘(Poly1‘𝐾)) =
(mulGrp‘(Poly1‘𝐾)) |
8 | 7 | crngmgp 20188 |
. . . . . . . 8
⊢
((Poly1‘𝐾) ∈ CRing →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
10 | 9 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
11 | | fzfid 13978 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (0...𝐴) ∈ Fin) |
12 | | aks6d1c5.7 |
. . . . . . . 8
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘𝐾))) |
13 | 10 | cmnmndd 19766 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) |
14 | 13 | adantr 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) |
15 | | nn0ex 12516 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℕ0 ∈
V) |
17 | | ovexd 7461 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝐴) ∈ V) |
18 | 16, 17 | elmapd 8865 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑔:(0...𝐴)⟶ℕ0)) |
19 | 18 | biimpd 228 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑔 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑔:(0...𝐴)⟶ℕ0)) |
20 | 19 | imp 405 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0) |
21 | 20 | ffvelcdmda 7099 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔‘𝑖) ∈
ℕ0) |
22 | 6 | crngringd 20193 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Ring) |
23 | 22 | ringcmnd 20227 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CMnd) |
24 | | cmnmnd 19759 |
. . . . . . . . . . . . 13
⊢
((Poly1‘𝐾) ∈ CMnd →
(Poly1‘𝐾)
∈ Mnd) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Mnd) |
26 | 25 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (Poly1‘𝐾) ∈ Mnd) |
27 | 26 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1‘𝐾) ∈ Mnd) |
28 | 3 | crngringd 20193 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Ring) |
29 | 28 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Ring) |
30 | 29 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring) |
31 | | aks6d1c5.6 |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝐾) |
32 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
33 | 31, 4, 32 | vr1cl 22143 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
34 | 30, 33 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
35 | | simpl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴)))) |
36 | | elfzelz 13541 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ) |
37 | 36 | adantl 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ) |
38 | 35, 37 | jca 510 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ ℤ)) |
39 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) |
40 | 39 | zrhrhm 21444 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) |
41 | | zringbas 21386 |
. . . . . . . . . . . . . . . 16
⊢ ℤ =
(Base‘ℤring) |
42 | | eqid 2728 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
43 | 41, 42 | rhmf 20431 |
. . . . . . . . . . . . . . 15
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
44 | 40, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
45 | 29, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
46 | 45 | ffvelcdmda 7099 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ ℤ) →
((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) |
47 | 38, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) |
48 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(algSc‘(Poly1‘𝐾)) =
(algSc‘(Poly1‘𝐾)) |
49 | 4, 48, 42, 32 | ply1sclcl 22212 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) |
50 | 30, 47, 49 | syl2anc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) |
51 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(+g‘(Poly1‘𝐾)) =
(+g‘(Poly1‘𝐾)) |
52 | 32, 51 | mndcl 18709 |
. . . . . . . . . 10
⊢
(((Poly1‘𝐾) ∈ Mnd ∧ 𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(Poly1‘𝐾))) |
53 | 27, 34, 50, 52 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(Poly1‘𝐾))) |
54 | 7, 32 | mgpbas 20087 |
. . . . . . . . . 10
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
55 | 54 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
56 | 53, 55 | eleqtrd 2831 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
57 | 1, 12, 14, 21, 56 | mulgnn0cld 19057 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
58 | 57 | ralrimiva 3143 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
59 | 1, 10, 11, 58 | gsummptcl 19929 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
60 | 54 | eqcomi 2737 |
. . . . . 6
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾)) |
61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾))) |
62 | 59, 61 | eleqtrd 2831 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈
(Base‘(Poly1‘𝐾))) |
63 | | aks6d1c5.8 |
. . . 4
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
64 | 62, 63 | fmptd 7129 |
. . 3
⊢ (𝜑 → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |
65 | | eqidd 2729 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (0g‘𝐾) = (0g‘𝐾)) |
66 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ≠ 𝑦) |
67 | 66 | neneqd 2942 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ¬ 𝑥 = 𝑦) |
68 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (ℕ0
↑m (0...𝐴))) |
69 | 15 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ℕ0 ∈
V) |
70 | | ovexd 7461 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (0...𝐴) ∈ V) |
71 | 69, 70 | elmapd 8865 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑥:(0...𝐴)⟶ℕ0)) |
72 | 68, 71 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑥:(0...𝐴)⟶ℕ0) |
73 | | ffn 6727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥:(0...𝐴)⟶ℕ0 → 𝑥 Fn (0...𝐴)) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑥 Fn (0...𝐴)) |
75 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ (ℕ0
↑m (0...𝐴))) |
76 | 69, 70 | elmapd 8865 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (𝑦 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑦:(0...𝐴)⟶ℕ0)) |
77 | 75, 76 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑦:(0...𝐴)⟶ℕ0) |
78 | | ffn 6727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦:(0...𝐴)⟶ℕ0 → 𝑦 Fn (0...𝐴)) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑦 Fn (0...𝐴)) |
80 | | eqfnfv2 7046 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)))) |
81 | 74, 79, 80 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)))) |
82 | 81 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)))) |
83 | 82 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)))) |
84 | 67, 83 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧))) |
85 | | ianor 979 |
. . . . . . . . . . . . . . 15
⊢ (¬
((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧))) |
86 | 84, 85 | sylib 217 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧))) |
87 | | eqidd 2729 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (0...𝐴) = (0...𝐴)) |
88 | 87 | notnotd 144 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴)) |
89 | 86, 88 | orcnd 876 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)) |
90 | | rexnal 3097 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(0...𝐴) ¬ (𝑥‘𝑧) = (𝑦‘𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥‘𝑧) = (𝑦‘𝑧)) |
91 | 89, 90 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥‘𝑧) = (𝑦‘𝑧)) |
92 | | df-ne 2938 |
. . . . . . . . . . . . 13
⊢ ((𝑥‘𝑧) ≠ (𝑦‘𝑧) ↔ ¬ (𝑥‘𝑧) = (𝑦‘𝑧)) |
93 | 92 | rexbii 3091 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
(0...𝐴)(𝑥‘𝑧) ≠ (𝑦‘𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥‘𝑧) = (𝑦‘𝑧)) |
94 | 91, 93 | sylibr 233 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥‘𝑧) ≠ (𝑦‘𝑧)) |
95 | | simpl 481 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) → ((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦)) |
96 | | simprl 769 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) → 𝑧 ∈ (0...𝐴)) |
97 | | simprr 771 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) → (𝑥‘𝑧) ≠ (𝑦‘𝑧)) |
98 | 95, 96, 97 | jca31 513 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) → ((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) |
99 | 71 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (𝑥 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑥:(0...𝐴)⟶ℕ0)) |
100 | 68, 99 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑥:(0...𝐴)⟶ℕ0) |
101 | 100 | ffvelcdmda 7099 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥‘𝑧) ∈
ℕ0) |
102 | 101 | nn0red 12571 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥‘𝑧) ∈ ℝ) |
103 | 76 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (𝑦 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑦:(0...𝐴)⟶ℕ0)) |
104 | 75, 103 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → 𝑦:(0...𝐴)⟶ℕ0) |
105 | 104 | ffvelcdmda 7099 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦‘𝑧) ∈
ℕ0) |
106 | 105 | nn0red 12571 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦‘𝑧) ∈ ℝ) |
107 | 102, 106 | lttri2d 11391 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥‘𝑧) ≠ (𝑦‘𝑧) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∨ (𝑦‘𝑧) < (𝑥‘𝑧)))) |
108 | 2 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝐾 ∈ Field) |
109 | | aks6d1p5.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℙ) |
110 | 109 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝑃 ∈ ℙ) |
111 | | aks6d1c5.3 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (chr‘𝐾) |
112 | | aks6d1c5.4 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
113 | 112 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝐴 ∈
ℕ0) |
114 | | aks6d1c5.5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 < 𝑃) |
115 | 114 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝐴 < 𝑃) |
116 | 68 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝑥 ∈ (ℕ0
↑m (0...𝐴))) |
117 | 75 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝑦 ∈ (ℕ0
↑m (0...𝐴))) |
118 | | simp-4r 782 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → (𝐺‘𝑥) = (𝐺‘𝑦)) |
119 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → 𝑧 ∈ (0...𝐴)) |
120 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → (𝑥‘𝑧) < (𝑦‘𝑧)) |
121 | 108, 110,
111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120 | aks6d1c5lem2 41641 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) < (𝑦‘𝑧)) → (0g‘𝐾) ≠
(0g‘𝐾)) |
122 | 2 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝐾 ∈ Field) |
123 | 109 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝑃 ∈ ℙ) |
124 | 112 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝐴 ∈
ℕ0) |
125 | 114 | ad6antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝐴 < 𝑃) |
126 | 75 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝑦 ∈ (ℕ0
↑m (0...𝐴))) |
127 | 68 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝑥 ∈ (ℕ0
↑m (0...𝐴))) |
128 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → (𝐺‘𝑥) = (𝐺‘𝑦)) |
129 | 128 | eqcomd 2734 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → (𝐺‘𝑦) = (𝐺‘𝑥)) |
130 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → 𝑧 ∈ (0...𝐴)) |
131 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → (𝑦‘𝑧) < (𝑥‘𝑧)) |
132 | 122, 123,
111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131 | aks6d1c5lem2 41641 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦‘𝑧) < (𝑥‘𝑧)) → (0g‘𝐾) ≠
(0g‘𝐾)) |
133 | 121, 132 | jaodan 955 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥‘𝑧) < (𝑦‘𝑧) ∨ (𝑦‘𝑧) < (𝑥‘𝑧))) → (0g‘𝐾) ≠
(0g‘𝐾)) |
134 | 133 | ex 411 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥‘𝑧) < (𝑦‘𝑧) ∨ (𝑦‘𝑧) < (𝑥‘𝑧)) → (0g‘𝐾) ≠
(0g‘𝐾))) |
135 | 107, 134 | sylbid 239 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥‘𝑧) ≠ (𝑦‘𝑧) → (0g‘𝐾) ≠
(0g‘𝐾))) |
136 | 135 | imp 405 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧)) → (0g‘𝐾) ≠
(0g‘𝐾)) |
137 | 98, 136 | syl 17 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥‘𝑧) ≠ (𝑦‘𝑧))) → (0g‘𝐾) ≠
(0g‘𝐾)) |
138 | 94, 137 | rexlimddv 3158 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → (0g‘𝐾) ≠
(0g‘𝐾)) |
139 | 138 | neneqd 2942 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ∧ 𝑥 ≠ 𝑦) → ¬ (0g‘𝐾) = (0g‘𝐾)) |
140 | 65, 139 | pm2.65da 815 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) → ¬ 𝑥 ≠ 𝑦) |
141 | | df-ne 2938 |
. . . . . . . . 9
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
142 | 141 | notbii 319 |
. . . . . . . 8
⊢ (¬
𝑥 ≠ 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦) |
143 | 140, 142 | sylib 217 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) → ¬ ¬ 𝑥 = 𝑦) |
144 | | notnotb 314 |
. . . . . . 7
⊢ (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦) |
145 | 143, 144 | sylibr 233 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) → 𝑥 = 𝑦) |
146 | 145 | ex 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦)) |
147 | 146 | ralrimiva 3143 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℕ0
↑m (0...𝐴))) → ∀𝑦 ∈ (ℕ0
↑m (0...𝐴))((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦)) |
148 | 147 | ralrimiva 3143 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (ℕ0
↑m (0...𝐴))∀𝑦 ∈ (ℕ0
↑m (0...𝐴))((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦)) |
149 | 64, 148 | jca 510 |
. 2
⊢ (𝜑 → (𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾)) ∧ ∀𝑥 ∈ (ℕ0 ↑m
(0...𝐴))∀𝑦 ∈ (ℕ0 ↑m
(0...𝐴))((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦))) |
150 | | dff13 7271 |
. 2
⊢ (𝐺:(ℕ0
↑m (0...𝐴))–1-1→(Base‘(Poly1‘𝐾)) ↔ (𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾)) ∧ ∀𝑥 ∈ (ℕ0 ↑m
(0...𝐴))∀𝑦 ∈ (ℕ0 ↑m
(0...𝐴))((𝐺‘𝑥) = (𝐺‘𝑦) → 𝑥 = 𝑦))) |
151 | 149, 150 | sylibr 233 |
1
⊢ (𝜑 → 𝐺:(ℕ0 ↑m
(0...𝐴))–1-1→(Base‘(Poly1‘𝐾))) |