Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5 Structured version   Visualization version   GIF version

Theorem aks6d1c5 42134
Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖   ,𝑔,𝑖   𝑔,𝐺,𝑖   𝑔,𝑋,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)

Proof of Theorem aks6d1c5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20658 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2730 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22090 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2730 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20157 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 13945 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19741 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 480 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12455 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 ovexd 7425 . . . . . . . . . . . 12 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8816 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 229 . . . . . . . . . 10 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 406 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7059 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20162 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20200 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19734 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 480 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20162 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
2928adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 480 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . . . 12 𝑋 = (var1𝐾)
32 eqid 2730 . . . . . . . . . . . 12 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22109 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 482 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13492 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 511 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2730 . . . . . . . . . . . . . . . 16 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21428 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21370 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
42 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20401 . . . . . . . . . . . . . . 15 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7059 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2730 . . . . . . . . . . . 12 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22179 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 584 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2730 . . . . . . . . . . 11 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18676 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20061 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2831 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 19034 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3126 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 19904 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2739 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2831 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7089 . . 3 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
65 eqidd 2731 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) = (0g𝐾))
66 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥𝑦)
6766neneqd 2931 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
68 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 ∈ (ℕ0m (0...𝐴)))
6915a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ℕ0 ∈ V)
70 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) ∈ V)
7169, 70elmapd 8816 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) ↔ 𝑥:(0...𝐴)⟶ℕ0))
7268, 71mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
73 ffn 6691 . . . . . . . . . . . . . . . . . . . 20 (𝑥:(0...𝐴)⟶ℕ0𝑥 Fn (0...𝐴))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 Fn (0...𝐴))
75 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 ∈ (ℕ0m (0...𝐴)))
7669, 70elmapd 8816 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) ↔ 𝑦:(0...𝐴)⟶ℕ0))
7775, 76mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
78 ffn 6691 . . . . . . . . . . . . . . . . . . . 20 (𝑦:(0...𝐴)⟶ℕ0𝑦 Fn (0...𝐴))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 Fn (0...𝐴))
80 eqfnfv2 7007 . . . . . . . . . . . . . . . . . . 19 ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8174, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8281notbid 318 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8382biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8467, 83mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
85 ianor 983 . . . . . . . . . . . . . . 15 (¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
87 eqidd 2731 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) = (0...𝐴))
8887notnotd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴))
8986, 88orcnd 878 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
90 rexnal 3083 . . . . . . . . . . . . 13 (∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
9189, 90sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
92 df-ne 2927 . . . . . . . . . . . . 13 ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ¬ (𝑥𝑧) = (𝑦𝑧))
9392rexbii 3077 . . . . . . . . . . . 12 (∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
9491, 93sylibr 234 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧))
95 simpl 482 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦))
96 simprl 770 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → 𝑧 ∈ (0...𝐴))
97 simprr 772 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (𝑥𝑧) ≠ (𝑦𝑧))
9895, 96, 97jca31 514 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)))
9971biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) → 𝑥:(0...𝐴)⟶ℕ0))
10068, 99mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
101100ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℕ0)
102101nn0red 12511 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℝ)
10376biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) → 𝑦:(0...𝐴)⟶ℕ0))
10475, 103mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
105104ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℕ0)
106105nn0red 12511 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℝ)
107102, 106lttri2d 11320 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))))
1082ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐾 ∈ Field)
109 aks6d1p5.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
110109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑃 ∈ ℙ)
111 aks6d1c5.3 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
112 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
113112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 ∈ ℕ0)
114 aks6d1c5.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝑃)
115114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 < 𝑃)
11668ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
11775ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
118 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝐺𝑥) = (𝐺𝑦))
119 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑧 ∈ (0...𝐴))
120 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝑥𝑧) < (𝑦𝑧))
121108, 110, 111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120aks6d1c5lem2 42133 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
1222ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐾 ∈ Field)
123109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑃 ∈ ℙ)
124112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 ∈ ℕ0)
125114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 < 𝑃)
12675ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
12768ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
128 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑥) = (𝐺𝑦))
129128eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑦) = (𝐺𝑥))
130 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑧 ∈ (0...𝐴))
131 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝑦𝑧) < (𝑥𝑧))
132122, 123, 111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131aks6d1c5lem2 42133 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾))
133121, 132jaodan 959 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))) → (0g𝐾) ≠ (0g𝐾))
134133ex 412 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾)))
135107, 134sylbid 240 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) → (0g𝐾) ≠ (0g𝐾)))
136135imp 406 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
13798, 136syl 17 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (0g𝐾) ≠ (0g𝐾))
13894, 137rexlimddv 3141 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) ≠ (0g𝐾))
139138neneqd 2931 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ (0g𝐾) = (0g𝐾))
14065, 139pm2.65da 816 . . . . . . . 8 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ 𝑥𝑦)
141 df-ne 2927 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
142141notbii 320 . . . . . . . 8 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
143140, 142sylib 218 . . . . . . 7 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ ¬ 𝑥 = 𝑦)
144 notnotb 315 . . . . . . 7 (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
145143, 144sylibr 234 . . . . . 6 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → 𝑥 = 𝑦)
146145ex 412 . . . . 5 (((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
147146ralrimiva 3126 . . . 4 ((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) → ∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
148147ralrimiva 3126 . . 3 (𝜑 → ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
14964, 148jca 511 . 2 (𝜑 → (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
150 dff13 7232 . 2 (𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)) ↔ (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
151149, 150sylibr 234 1 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5110  cmpt 5191   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075   < clt 11215  0cn0 12449  cz 12536  ...cfz 13475  cprime 16648  Basecbs 17186  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  Fieldcfield 20646  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-uc1p 26044  df-q1p 26045
This theorem is referenced by:  aks6d1c6lem3  42167
  Copyright terms: Public domain W3C validator