Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5 Structured version   Visualization version   GIF version

Theorem aks6d1c5 42096
Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖   ,𝑔,𝑖   𝑔,𝐺,𝑖   𝑔,𝑋,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)

Proof of Theorem aks6d1c5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20764 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2740 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22221 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2740 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20268 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 14024 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19846 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 480 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12559 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 ovexd 7483 . . . . . . . . . . . 12 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8898 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 229 . . . . . . . . . 10 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 406 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7118 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20273 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20307 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19839 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 480 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20273 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
2928adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 480 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . . . 12 𝑋 = (var1𝐾)
32 eqid 2740 . . . . . . . . . . . 12 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22240 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 482 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13584 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 511 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2740 . . . . . . . . . . . . . . . 16 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21545 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21487 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
42 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20511 . . . . . . . . . . . . . . 15 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7118 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2740 . . . . . . . . . . . 12 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22310 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 583 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2740 . . . . . . . . . . 11 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18780 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1371 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20167 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2846 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 19135 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3152 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 20009 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2749 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2846 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7148 . . 3 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
65 eqidd 2741 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) = (0g𝐾))
66 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥𝑦)
6766neneqd 2951 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
68 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 ∈ (ℕ0m (0...𝐴)))
6915a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ℕ0 ∈ V)
70 ovexd 7483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) ∈ V)
7169, 70elmapd 8898 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) ↔ 𝑥:(0...𝐴)⟶ℕ0))
7268, 71mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
73 ffn 6747 . . . . . . . . . . . . . . . . . . . 20 (𝑥:(0...𝐴)⟶ℕ0𝑥 Fn (0...𝐴))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 Fn (0...𝐴))
75 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 ∈ (ℕ0m (0...𝐴)))
7669, 70elmapd 8898 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) ↔ 𝑦:(0...𝐴)⟶ℕ0))
7775, 76mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
78 ffn 6747 . . . . . . . . . . . . . . . . . . . 20 (𝑦:(0...𝐴)⟶ℕ0𝑦 Fn (0...𝐴))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 Fn (0...𝐴))
80 eqfnfv2 7065 . . . . . . . . . . . . . . . . . . 19 ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8174, 79, 80syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8281notbid 318 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8382biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8467, 83mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
85 ianor 982 . . . . . . . . . . . . . . 15 (¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
87 eqidd 2741 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) = (0...𝐴))
8887notnotd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴))
8986, 88orcnd 877 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
90 rexnal 3106 . . . . . . . . . . . . 13 (∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
9189, 90sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
92 df-ne 2947 . . . . . . . . . . . . 13 ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ¬ (𝑥𝑧) = (𝑦𝑧))
9392rexbii 3100 . . . . . . . . . . . 12 (∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
9491, 93sylibr 234 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧))
95 simpl 482 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦))
96 simprl 770 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → 𝑧 ∈ (0...𝐴))
97 simprr 772 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (𝑥𝑧) ≠ (𝑦𝑧))
9895, 96, 97jca31 514 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)))
9971biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) → 𝑥:(0...𝐴)⟶ℕ0))
10068, 99mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
101100ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℕ0)
102101nn0red 12614 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℝ)
10376biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) → 𝑦:(0...𝐴)⟶ℕ0))
10475, 103mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
105104ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℕ0)
106105nn0red 12614 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℝ)
107102, 106lttri2d 11429 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))))
1082ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐾 ∈ Field)
109 aks6d1p5.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
110109ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑃 ∈ ℙ)
111 aks6d1c5.3 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
112 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
113112ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 ∈ ℕ0)
114 aks6d1c5.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝑃)
115114ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 < 𝑃)
11668ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
11775ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
118 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝐺𝑥) = (𝐺𝑦))
119 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑧 ∈ (0...𝐴))
120 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝑥𝑧) < (𝑦𝑧))
121108, 110, 111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120aks6d1c5lem2 42095 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
1222ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐾 ∈ Field)
123109ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑃 ∈ ℙ)
124112ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 ∈ ℕ0)
125114ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 < 𝑃)
12675ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
12768ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
128 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑥) = (𝐺𝑦))
129128eqcomd 2746 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑦) = (𝐺𝑥))
130 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑧 ∈ (0...𝐴))
131 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝑦𝑧) < (𝑥𝑧))
132122, 123, 111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131aks6d1c5lem2 42095 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾))
133121, 132jaodan 958 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))) → (0g𝐾) ≠ (0g𝐾))
134133ex 412 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾)))
135107, 134sylbid 240 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) → (0g𝐾) ≠ (0g𝐾)))
136135imp 406 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
13798, 136syl 17 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (0g𝐾) ≠ (0g𝐾))
13894, 137rexlimddv 3167 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) ≠ (0g𝐾))
139138neneqd 2951 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ (0g𝐾) = (0g𝐾))
14065, 139pm2.65da 816 . . . . . . . 8 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ 𝑥𝑦)
141 df-ne 2947 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
142141notbii 320 . . . . . . . 8 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
143140, 142sylib 218 . . . . . . 7 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ ¬ 𝑥 = 𝑦)
144 notnotb 315 . . . . . . 7 (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
145143, 144sylibr 234 . . . . . 6 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → 𝑥 = 𝑦)
146145ex 412 . . . . 5 (((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
147146ralrimiva 3152 . . . 4 ((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) → ∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
148147ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
14964, 148jca 511 . 2 (𝜑 → (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
150 dff13 7292 . 2 (𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)) ↔ (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
151149, 150sylibr 234 1 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184   < clt 11324  0cn0 12553  cz 12639  ...cfz 13567  cprime 16718  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Fieldcfield 20752  ringczring 21480  ℤRHomczrh 21533  chrcchr 21535  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192
This theorem is referenced by:  aks6d1c6lem3  42129
  Copyright terms: Public domain W3C validator