Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5 Structured version   Visualization version   GIF version

Theorem aks6d1c5 42112
Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖   ,𝑔,𝑖   𝑔,𝐺,𝑖   𝑔,𝑋,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)

Proof of Theorem aks6d1c5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20627 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2729 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22081 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2729 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20126 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 13880 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19683 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 480 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12390 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 ovexd 7384 . . . . . . . . . . . 12 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8767 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 229 . . . . . . . . . 10 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 406 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7018 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20131 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20169 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19676 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 480 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20131 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
2928adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 480 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . . . 12 𝑋 = (var1𝐾)
32 eqid 2729 . . . . . . . . . . . 12 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22100 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 482 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13427 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 511 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2729 . . . . . . . . . . . . . . . 16 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21418 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21360 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
42 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20370 . . . . . . . . . . . . . . 15 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7018 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2729 . . . . . . . . . . . 12 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22170 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 584 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2729 . . . . . . . . . . 11 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18616 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20030 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2830 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 18974 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3121 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 19846 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2738 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2830 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7048 . . 3 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
65 eqidd 2730 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) = (0g𝐾))
66 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥𝑦)
6766neneqd 2930 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
68 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 ∈ (ℕ0m (0...𝐴)))
6915a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ℕ0 ∈ V)
70 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) ∈ V)
7169, 70elmapd 8767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) ↔ 𝑥:(0...𝐴)⟶ℕ0))
7268, 71mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
73 ffn 6652 . . . . . . . . . . . . . . . . . . . 20 (𝑥:(0...𝐴)⟶ℕ0𝑥 Fn (0...𝐴))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 Fn (0...𝐴))
75 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 ∈ (ℕ0m (0...𝐴)))
7669, 70elmapd 8767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) ↔ 𝑦:(0...𝐴)⟶ℕ0))
7775, 76mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
78 ffn 6652 . . . . . . . . . . . . . . . . . . . 20 (𝑦:(0...𝐴)⟶ℕ0𝑦 Fn (0...𝐴))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 Fn (0...𝐴))
80 eqfnfv2 6966 . . . . . . . . . . . . . . . . . . 19 ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8174, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8281notbid 318 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8382biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8467, 83mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
85 ianor 983 . . . . . . . . . . . . . . 15 (¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
87 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) = (0...𝐴))
8887notnotd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴))
8986, 88orcnd 878 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
90 rexnal 3081 . . . . . . . . . . . . 13 (∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
9189, 90sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
92 df-ne 2926 . . . . . . . . . . . . 13 ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ¬ (𝑥𝑧) = (𝑦𝑧))
9392rexbii 3076 . . . . . . . . . . . 12 (∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
9491, 93sylibr 234 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧))
95 simpl 482 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦))
96 simprl 770 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → 𝑧 ∈ (0...𝐴))
97 simprr 772 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (𝑥𝑧) ≠ (𝑦𝑧))
9895, 96, 97jca31 514 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)))
9971biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) → 𝑥:(0...𝐴)⟶ℕ0))
10068, 99mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
101100ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℕ0)
102101nn0red 12446 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℝ)
10376biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) → 𝑦:(0...𝐴)⟶ℕ0))
10475, 103mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
105104ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℕ0)
106105nn0red 12446 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℝ)
107102, 106lttri2d 11255 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))))
1082ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐾 ∈ Field)
109 aks6d1p5.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
110109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑃 ∈ ℙ)
111 aks6d1c5.3 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
112 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
113112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 ∈ ℕ0)
114 aks6d1c5.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝑃)
115114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 < 𝑃)
11668ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
11775ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
118 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝐺𝑥) = (𝐺𝑦))
119 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑧 ∈ (0...𝐴))
120 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝑥𝑧) < (𝑦𝑧))
121108, 110, 111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120aks6d1c5lem2 42111 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
1222ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐾 ∈ Field)
123109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑃 ∈ ℙ)
124112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 ∈ ℕ0)
125114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 < 𝑃)
12675ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
12768ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
128 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑥) = (𝐺𝑦))
129128eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑦) = (𝐺𝑥))
130 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑧 ∈ (0...𝐴))
131 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝑦𝑧) < (𝑥𝑧))
132122, 123, 111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131aks6d1c5lem2 42111 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾))
133121, 132jaodan 959 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))) → (0g𝐾) ≠ (0g𝐾))
134133ex 412 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾)))
135107, 134sylbid 240 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) → (0g𝐾) ≠ (0g𝐾)))
136135imp 406 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
13798, 136syl 17 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (0g𝐾) ≠ (0g𝐾))
13894, 137rexlimddv 3136 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) ≠ (0g𝐾))
139138neneqd 2930 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ (0g𝐾) = (0g𝐾))
14065, 139pm2.65da 816 . . . . . . . 8 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ 𝑥𝑦)
141 df-ne 2926 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
142141notbii 320 . . . . . . . 8 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
143140, 142sylib 218 . . . . . . 7 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ ¬ 𝑥 = 𝑦)
144 notnotb 315 . . . . . . 7 (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
145143, 144sylibr 234 . . . . . 6 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → 𝑥 = 𝑦)
146145ex 412 . . . . 5 (((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
147146ralrimiva 3121 . . . 4 ((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) → ∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
148147ralrimiva 3121 . . 3 (𝜑 → ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
14964, 148jca 511 . 2 (𝜑 → (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
150 dff13 7191 . 2 (𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)) ↔ (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
151149, 150sylibr 234 1 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436   class class class wbr 5092  cmpt 5173   Fn wfn 6477  wf 6478  1-1wf1 6479  cfv 6482  (class class class)co 7349  m cmap 8753  0cc0 11009   < clt 11149  0cn0 12384  cz 12471  ...cfz 13410  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  Fieldcfield 20615  ringczring 21353  ℤRHomczrh 21406  chrcchr 21408  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-uc1p 26035  df-q1p 26036
This theorem is referenced by:  aks6d1c6lem3  42145
  Copyright terms: Public domain W3C validator