Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5 Structured version   Visualization version   GIF version

Theorem aks6d1c5 42127
Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖   ,𝑔,𝑖   𝑔,𝐺,𝑖   𝑔,𝑋,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)

Proof of Theorem aks6d1c5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . . . 10 (𝜑𝐾 ∈ Field)
32fldcrngd 20651 . . . . . . . . 9 (𝜑𝐾 ∈ CRing)
4 eqid 2729 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22083 . . . . . . . . 9 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . . . 8 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2729 . . . . . . . . 9 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20150 . . . . . . . 8 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . . . 7 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 13938 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . . . 8 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19734 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 480 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12448 . . . . . . . . . . . . 13 0 ∈ V
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ0 ∈ V)
17 ovexd 7422 . . . . . . . . . . . 12 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8813 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 229 . . . . . . . . . 10 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 406 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7056 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20155 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20193 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19727 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 480 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20155 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
2928adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 480 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . . . 12 𝑋 = (var1𝐾)
32 eqid 2729 . . . . . . . . . . . 12 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22102 . . . . . . . . . . 11 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 482 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13485 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 511 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2729 . . . . . . . . . . . . . . . 16 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21421 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21363 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
42 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20394 . . . . . . . . . . . . . . 15 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2729 . . . . . . . . . . . 12 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22172 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 584 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2729 . . . . . . . . . . 11 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18669 . . . . . . . . . 10 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20054 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2830 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 19027 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3125 . . . . . 6 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 19897 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2738 . . . . . 6 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . . . 5 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2830 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . . . 4 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7086 . . 3 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
65 eqidd 2730 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) = (0g𝐾))
66 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥𝑦)
6766neneqd 2930 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
68 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 ∈ (ℕ0m (0...𝐴)))
6915a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ℕ0 ∈ V)
70 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) ∈ V)
7169, 70elmapd 8813 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) ↔ 𝑥:(0...𝐴)⟶ℕ0))
7268, 71mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
73 ffn 6688 . . . . . . . . . . . . . . . . . . . 20 (𝑥:(0...𝐴)⟶ℕ0𝑥 Fn (0...𝐴))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥 Fn (0...𝐴))
75 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 ∈ (ℕ0m (0...𝐴)))
7669, 70elmapd 8813 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) ↔ 𝑦:(0...𝐴)⟶ℕ0))
7775, 76mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
78 ffn 6688 . . . . . . . . . . . . . . . . . . . 20 (𝑦:(0...𝐴)⟶ℕ0𝑦 Fn (0...𝐴))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦 Fn (0...𝐴))
80 eqfnfv2 7004 . . . . . . . . . . . . . . . . . . 19 ((𝑥 Fn (0...𝐴) ∧ 𝑦 Fn (0...𝐴)) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8174, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ↔ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8281notbid 318 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 ↔ ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8382biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))))
8467, 83mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
85 ianor 983 . . . . . . . . . . . . . . 15 (¬ ((0...𝐴) = (0...𝐴) ∧ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)) ↔ (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (¬ (0...𝐴) = (0...𝐴) ∨ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧)))
87 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0...𝐴) = (0...𝐴))
8887notnotd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ¬ (0...𝐴) = (0...𝐴))
8986, 88orcnd 878 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
90 rexnal 3082 . . . . . . . . . . . . 13 (∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧) ↔ ¬ ∀𝑧 ∈ (0...𝐴)(𝑥𝑧) = (𝑦𝑧))
9189, 90sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
92 df-ne 2926 . . . . . . . . . . . . 13 ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ¬ (𝑥𝑧) = (𝑦𝑧))
9392rexbii 3076 . . . . . . . . . . . 12 (∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧) ↔ ∃𝑧 ∈ (0...𝐴) ¬ (𝑥𝑧) = (𝑦𝑧))
9491, 93sylibr 234 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (0...𝐴)(𝑥𝑧) ≠ (𝑦𝑧))
95 simpl 482 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦))
96 simprl 770 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → 𝑧 ∈ (0...𝐴))
97 simprr 772 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (𝑥𝑧) ≠ (𝑦𝑧))
9895, 96, 97jca31 514 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)))
9971biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑥 ∈ (ℕ0m (0...𝐴)) → 𝑥:(0...𝐴)⟶ℕ0))
10068, 99mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑥:(0...𝐴)⟶ℕ0)
101100ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℕ0)
102101nn0red 12504 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑥𝑧) ∈ ℝ)
10376biimpd 229 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (𝑦 ∈ (ℕ0m (0...𝐴)) → 𝑦:(0...𝐴)⟶ℕ0))
10475, 103mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → 𝑦:(0...𝐴)⟶ℕ0)
105104ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℕ0)
106105nn0red 12504 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (𝑦𝑧) ∈ ℝ)
107102, 106lttri2d 11313 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) ↔ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))))
1082ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐾 ∈ Field)
109 aks6d1p5.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
110109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑃 ∈ ℙ)
111 aks6d1c5.3 . . . . . . . . . . . . . . . . 17 𝑃 = (chr‘𝐾)
112 aks6d1c5.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℕ0)
113112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 ∈ ℕ0)
114 aks6d1c5.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝑃)
115114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝐴 < 𝑃)
11668ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
11775ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
118 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝐺𝑥) = (𝐺𝑦))
119 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → 𝑧 ∈ (0...𝐴))
120 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (𝑥𝑧) < (𝑦𝑧))
121108, 110, 111, 113, 115, 31, 12, 63, 116, 117, 118, 119, 120aks6d1c5lem2 42126 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) < (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
1222ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐾 ∈ Field)
123109ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑃 ∈ ℙ)
124112ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 ∈ ℕ0)
125114ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝐴 < 𝑃)
12675ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑦 ∈ (ℕ0m (0...𝐴)))
12768ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑥 ∈ (ℕ0m (0...𝐴)))
128 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑥) = (𝐺𝑦))
129128eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝐺𝑦) = (𝐺𝑥))
130 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → 𝑧 ∈ (0...𝐴))
131 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (𝑦𝑧) < (𝑥𝑧))
132122, 123, 111, 124, 125, 31, 12, 63, 126, 127, 129, 130, 131aks6d1c5lem2 42126 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾))
133121, 132jaodan 959 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ ((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧))) → (0g𝐾) ≠ (0g𝐾))
134133ex 412 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → (((𝑥𝑧) < (𝑦𝑧) ∨ (𝑦𝑧) < (𝑥𝑧)) → (0g𝐾) ≠ (0g𝐾)))
135107, 134sylbid 240 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) → ((𝑥𝑧) ≠ (𝑦𝑧) → (0g𝐾) ≠ (0g𝐾)))
136135imp 406 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ 𝑧 ∈ (0...𝐴)) ∧ (𝑥𝑧) ≠ (𝑦𝑧)) → (0g𝐾) ≠ (0g𝐾))
13798, 136syl 17 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) ∧ (𝑧 ∈ (0...𝐴) ∧ (𝑥𝑧) ≠ (𝑦𝑧))) → (0g𝐾) ≠ (0g𝐾))
13894, 137rexlimddv 3140 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → (0g𝐾) ≠ (0g𝐾))
139138neneqd 2930 . . . . . . . . 9 (((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) ∧ 𝑥𝑦) → ¬ (0g𝐾) = (0g𝐾))
14065, 139pm2.65da 816 . . . . . . . 8 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ 𝑥𝑦)
141 df-ne 2926 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
142141notbii 320 . . . . . . . 8 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
143140, 142sylib 218 . . . . . . 7 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → ¬ ¬ 𝑥 = 𝑦)
144 notnotb 315 . . . . . . 7 (𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦)
145143, 144sylibr 234 . . . . . 6 ((((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) ∧ (𝐺𝑥) = (𝐺𝑦)) → 𝑥 = 𝑦)
146145ex 412 . . . . 5 (((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) ∧ 𝑦 ∈ (ℕ0m (0...𝐴))) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
147146ralrimiva 3125 . . . 4 ((𝜑𝑥 ∈ (ℕ0m (0...𝐴))) → ∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
148147ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
14964, 148jca 511 . 2 (𝜑 → (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
150 dff13 7229 . 2 (𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)) ↔ (𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)) ∧ ∀𝑥 ∈ (ℕ0m (0...𝐴))∀𝑦 ∈ (ℕ0m (0...𝐴))((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
151149, 150sylibr 234 1 (𝜑𝐺:(ℕ0m (0...𝐴))–1-1→(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cmpt 5188   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068   < clt 11208  0cn0 12442  cz 12529  ...cfz 13468  cprime 16641  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  Fieldcfield 20639  ringczring 21356  ℤRHomczrh 21409  chrcchr 21411  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-uc1p 26037  df-q1p 26038
This theorem is referenced by:  aks6d1c6lem3  42160
  Copyright terms: Public domain W3C validator