MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1const Structured version   Visualization version   GIF version

Theorem pf1const 21502
Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1const.b 𝐵 = (Base‘𝑅)
pf1const.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1const ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ 𝑄)

Proof of Theorem pf1const
StepHypRef Expression
1 eqid 2740 . . . 4 (eval1𝑅) = (eval1𝑅)
2 eqid 2740 . . . 4 (Poly1𝑅) = (Poly1𝑅)
3 pf1const.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2740 . . . 4 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
51, 2, 3, 4evl1sca 21490 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) = (𝐵 × {𝑋}))
6 eqid 2740 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
71, 2, 6, 3evl1rhm 21488 . . . . . 6 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
87adantr 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
9 eqid 2740 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
10 eqid 2740 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
119, 10rhmf 19960 . . . . 5 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
12 ffn 6597 . . . . 5 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
138, 11, 123syl 18 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
14 crngring 19785 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1514adantr 481 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
162, 4, 3, 9ply1sclf 21446 . . . . . 6 (𝑅 ∈ Ring → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
1715, 16syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
18 ffvelrn 6954 . . . . 5 (((algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)) ∧ 𝑋𝐵) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
1917, 18sylancom 588 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
20 fnfvelrn 6953 . . . 4 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ran (eval1𝑅))
2113, 19, 20syl2anc 584 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ran (eval1𝑅))
225, 21eqeltrrd 2842 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ ran (eval1𝑅))
23 pf1const.q . 2 𝑄 = ran (eval1𝑅)
2422, 23eleqtrrdi 2852 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {csn 4567   × cxp 5587  ran crn 5590   Fn wfn 6426  wf 6427  cfv 6431  (class class class)co 7269  Basecbs 16902  s cpws 17147  Ringcrg 19773  CRingccrg 19774   RingHom crh 19946  algSccascl 21049  Poly1cpl1 21338  eval1ce1 21470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-ofr 7526  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-sup 9171  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-fz 13231  df-fzo 13374  df-seq 13712  df-hash 14035  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-hom 16976  df-cco 16977  df-0g 17142  df-gsum 17143  df-prds 17148  df-pws 17150  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-mhm 18420  df-submnd 18421  df-grp 18570  df-minusg 18571  df-sbg 18572  df-mulg 18691  df-subg 18742  df-ghm 18822  df-cntz 18913  df-cmn 19378  df-abl 19379  df-mgp 19711  df-ur 19728  df-srg 19732  df-ring 19775  df-cring 19776  df-rnghom 19949  df-subrg 20012  df-lmod 20115  df-lss 20184  df-lsp 20224  df-assa 21050  df-asp 21051  df-ascl 21052  df-psr 21102  df-mvr 21103  df-mpl 21104  df-opsr 21106  df-evls 21272  df-evl 21273  df-psr1 21341  df-ply1 21343  df-evl1 21472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator