MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1const Structured version   Visualization version   GIF version

Theorem pf1const 20503
Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1const.b 𝐵 = (Base‘𝑅)
pf1const.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1const ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ 𝑄)

Proof of Theorem pf1const
StepHypRef Expression
1 eqid 2821 . . . 4 (eval1𝑅) = (eval1𝑅)
2 eqid 2821 . . . 4 (Poly1𝑅) = (Poly1𝑅)
3 pf1const.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2821 . . . 4 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
51, 2, 3, 4evl1sca 20491 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) = (𝐵 × {𝑋}))
6 eqid 2821 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
71, 2, 6, 3evl1rhm 20489 . . . . . 6 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
87adantr 483 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
9 eqid 2821 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
10 eqid 2821 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
119, 10rhmf 19472 . . . . 5 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
12 ffn 6509 . . . . 5 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
138, 11, 123syl 18 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
14 crngring 19302 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1514adantr 483 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
162, 4, 3, 9ply1sclf 20447 . . . . . 6 (𝑅 ∈ Ring → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
1715, 16syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
18 ffvelrn 6844 . . . . 5 (((algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)) ∧ 𝑋𝐵) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
1917, 18sylancom 590 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
20 fnfvelrn 6843 . . . 4 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ran (eval1𝑅))
2113, 19, 20syl2anc 586 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ran (eval1𝑅))
225, 21eqeltrrd 2914 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ ran (eval1𝑅))
23 pf1const.q . 2 𝑄 = ran (eval1𝑅)
2422, 23eleqtrrdi 2924 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐵 × {𝑋}) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {csn 4561   × cxp 5548  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  s cpws 16714  Ringcrg 19291  CRingccrg 19292   RingHom crh 19458  algSccascl 20078  Poly1cpl1 20339  eval1ce1 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-rnghom 19461  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-assa 20079  df-asp 20080  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132  df-opsr 20134  df-evls 20280  df-evl 20281  df-psr1 20342  df-ply1 20344  df-evl1 20473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator